Incremental input-to-state stability for Lur'e systems and asymptotic behaviour in the presence of Stepanov almost periodic forcing

被引:5
作者
Gilmore, Max E. [1 ]
Guiver, Chris [2 ]
Logemann, Hartmut [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Edinburgh Napier Univ, Sch Engn & Built Environm, Merchiston Campus,10 Colinton Rd, Edinburgh EH10 5DT, Midlothian, Scotland
关键词
Absolute stability; Almost periodic functions; Circle criterion; Differential inclusions; Incremental (integral) input-to-state stability; Lur'e systems; CIRCLE CRITERION;
D O I
10.1016/j.jde.2021.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove (integral) input-to-state stability results for a class of forced Lur'e differential inclusions and use them to investigate incremental (integral) input-to-state stability properties of Lur'e differential equations. The latter provide a basis for the derivation of convergence results for trajectories of Lur'e equations generated by Stepanov almost periodic inputs. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:692 / 733
页数:42
相关论文
共 41 条
  • [1] Amerio L., 1971, Almost Periodic Functions and Functional Equations
  • [2] A Lyapunov approach to incremental stability properties
    Angeli, D
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (03) : 410 - 421
  • [3] A characterization of integral input-to-state stability
    Angeli, D
    Sontag, ED
    Wang, Y
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (06) : 1082 - 1097
  • [4] [Anonymous], 2000, SYS CON FDN
  • [5] Input-to-state stability for a class of Lurie systems
    Arcak, M
    Teel, A
    [J]. AUTOMATICA, 2002, 38 (11) : 1945 - 1949
  • [6] THE WEIGHTED POINTWISE ERGODIC THEOREM AND THE INDIVIDUAL ERGODIC THEOREM ALONG SUBSEQUENCES
    BELLOW, A
    LOSERT, V
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 288 (01) : 307 - 345
  • [7] The converging-input converging-state property for Lur'e systems
    Bill, Adam
    Guiver, Chris
    Logemann, Hartmut
    Townley, Stuart
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2017, 29 (01)
  • [8] Bohr H., 1947, ALMOST PERIODIC FUNC
  • [9] Burago D., 2001, CRM P LECT NOTES
  • [10] Corduneanu C., 1989, ALMOST PERIODIC FUNC