Manufacturing Cell Therapies Using Engineered Biomaterials

被引:33
作者
Abdeen, Amr A. [1 ]
Saha, Krishanu [1 ,2 ,3 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biomed Engn, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Med Hist & Bioeth, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
PLURIPOTENT STEM-CELLS; EXTRACELLULAR-MATRIX; CLINICAL-TRIALS; DECIPHER CELL; CARDIOMYOCYTES; HETEROGENEITY; CHALLENGES; PLATFORM; CULTURE; DESIGN;
D O I
10.1016/j.tibtech.2017.06.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing.
引用
收藏
页码:971 / 982
页数:12
相关论文
共 106 条
[31]   Stromal cells and stem cells in clinical bone regeneration [J].
Grayson, Warren L. ;
Bunnell, Bruce A. ;
Martin, Elizabeth ;
Frazier, Trivia ;
Hung, Ben P. ;
Gimble, Jeffrey M. .
NATURE REVIEWS ENDOCRINOLOGY, 2015, 11 (03) :140-150
[32]   Biomaterials and emerging anticancer therapeutics: engineering the microenvironment [J].
Gu, Luo ;
Mooney, David J. .
NATURE REVIEWS CANCER, 2016, 16 (01) :56-66
[33]  
Haddock R, 2017, MANUFACTURING CELL T
[34]   Direct cell reprogramming is a stochastic process amenable to acceleration [J].
Hanna, Jacob ;
Saha, Krishanu ;
Pando, Bernardo ;
van Zon, Jeroen ;
Lengner, Christopher J. ;
Creyghton, Menno P. ;
van Oudenaarden, Alexander ;
Jaenisch, Rudolf .
NATURE, 2009, 462 (7273) :595-U63
[35]   High-content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics [J].
Harkness, Ty ;
McNulty, Jason D. ;
Prestil, Ryan ;
Seymour, Stephanie K. ;
Klann, Tyler ;
Murrell, Michael ;
Ashton, Randolph S. ;
Saha, Krishanu .
BIOTECHNOLOGY JOURNAL, 2015, 10 (10) :1555-1567
[36]   RGD modified polymers: biomaterials for stimulated cell adhesion and beyond [J].
Hersel, U ;
Dahmen, C ;
Kessler, H .
BIOMATERIALS, 2003, 24 (24) :4385-4415
[37]   "In vitro" 3D models of tumor-immune system interaction [J].
Hirt, Christian ;
Papadimitropoulos, Adam ;
Mele, Valentina ;
Muraro, Manuele G. ;
Mengus, Chantal ;
Iezzi, Giandomenica ;
Terracciano, Luigi ;
Martin, Ivan ;
Spagnoli, Giulio C. .
ADVANCED DRUG DELIVERY REVIEWS, 2014, 79-80 :145-154
[38]   Induced Pluripotent Stem Cells Meet Genome Editing [J].
Hockemeyer, Dirk ;
Jaenisch, Rudolf .
CELL STEM CELL, 2016, 18 (05) :573-586
[39]   Biomaterial Strategies for Immunomodulation [J].
Hotaling, Nathan A. ;
Tang, Li ;
Irvine, Darrell J. ;
Babensee, Julia E. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 17, 2015, 17 :317-349
[40]   Transdifferentiation: A new frontier in cardiovascular cell therapy [J].
Ibrahim, Michael ;
Atluri, Pavan .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2017, 153 (01) :130-131