Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals

被引:4938
作者
Dong, Qingfeng [1 ]
Fang, Yanjun [1 ]
Shao, Yuchuan [1 ]
Mulligan, Padhraic [2 ]
Qiu, Jie [2 ]
Cao, Lei [2 ]
Huang, Jinsong [1 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[2] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, Columbus, OH 43210 USA
关键词
HALIDE PEROVSKITES; SOLAR-CELL; MOBILITIES;
D O I
10.1126/science.aaa5760
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm(-2)) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals than in polycrystalline thin films. The long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.
引用
收藏
页码:967 / 970
页数:4
相关论文
共 16 条
  • [1] Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications
    Baikie, Tom
    Fang, Yanan
    Kadro, Jeannette M.
    Schreyer, Martin
    Wei, Fengxia
    Mhaisalkar, Subodh G.
    Graetzel, Michael
    White, Tim J.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) : 5628 - 5641
  • [2] TRAP DENSITY DETERMINATION BY SPACE-CHARGE-LIMITED CURRENTS
    BUBE, RH
    [J]. JOURNAL OF APPLIED PHYSICS, 1962, 33 (05) : 1733 - &
  • [3] High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites
    Dong, Rui
    Fang, Yanjun
    Chae, Jungseok
    Dai, Jun
    Xiao, Zhengguo
    Dong, Qingfeng
    Yuan, Yongbo
    Centrone, Andrea
    Zeng, Xiao Cheng
    Huang, Jinsong
    [J]. ADVANCED MATERIALS, 2015, 27 (11) : 1912 - +
  • [4] The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite
    Kim, Jongseob
    Lee, Sung-Hoon
    Lee, Jung Hoon
    Hong, Ki-Ha
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (08): : 1312 - 1317
  • [5] Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
    Lee, Michael M.
    Teuscher, Joel
    Miyasaka, Tsutomu
    Murakami, Takurou N.
    Snaith, Henry J.
    [J]. SCIENCE, 2012, 338 (6107) : 643 - 647
  • [6] Manser JS, 2014, NAT PHOTONICS, V8, P737, DOI [10.1038/NPHOTON.2014.171, 10.1038/nphoton.2014.171]
  • [7] A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
    Mei, Anyi
    Li, Xiong
    Liu, Linfeng
    Ku, Zhiliang
    Liu, Tongfa
    Rong, Yaoguang
    Xu, Mi
    Hu, Min
    Chen, Jiangzhao
    Yang, Ying
    Graetzel, Michael
    Han, Hongwei
    [J]. SCIENCE, 2014, 345 (6194) : 295 - 298
  • [8] Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic Inorganic Lead Halide Perovskites
    Noel, Nakita K.
    Abate, Antonio
    Stranks, Samuel D.
    Parrott, Elizabeth S.
    Burlakov, Victor M.
    Goriely, Alain
    Snaith, Henry J.
    [J]. ACS NANO, 2014, 8 (10) : 9815 - 9821
  • [9] Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds
    Shkrob, Ilya A.
    Marin, Timothy W.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07): : 1066 - 1071
  • [10] Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties
    Stoumpos, Constantinos C.
    Malliakas, Christos D.
    Kanatzidis, Mercouri G.
    [J]. INORGANIC CHEMISTRY, 2013, 52 (15) : 9019 - 9038