A multiply robust Mann-Whitney test for non-randomised pretest-posttest studies with missing data

被引:0
作者
Zhang, Shixiao [1 ]
Han, Peisong [2 ]
Wu, Changbao [3 ]
机构
[1] Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USA
[2] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
[3] Univ Waterloo, Waterloo, ON, Canada
关键词
Causal inference; empirical likelihood; missing at random; nonparametric test; propensity score; EMPIRICAL LIKELIHOOD METHODS; SEMIPARAMETRIC ESTIMATION; IMPUTATION; ESTIMATORS;
D O I
10.1080/10485252.2020.1736290
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Pretest-posttest studies are a commonly used design by social scientists, medical and health researchers to examine the effect of a treatment or an intervention. We propose an empirical likelihood based Mann-Whitney test on the equality of the response distribution functions of the treatment and control arms for non-randomised pretest-posttest studies with missing responses. The proposed test is multiply robust in the sense that multiple working models can be postulated for the propensity score of treatment assignment, the missingness probability and the outcome regression, and the validity of the test only requires certain combinations of the working models to be correctly specified. Performances of the proposed test are examined through an application to the dataset from AIDS Clinical Trials Group Protocol 175 and simulation studies.
引用
收藏
页码:323 / 344
页数:22
相关论文
共 32 条
[1]  
[Anonymous], 2019, Ph.D. thesis
[2]   COMPARATIVE ANALYSES OF PRETEST-POSTTEST RESEARCH DESIGNS [J].
BROGAN, DR ;
KUTNER, MH .
AMERICAN STATISTICIAN, 1980, 34 (04) :229-232
[3]   Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys [J].
Chen, J ;
Sitter, RR ;
Wu, C .
BIOMETRIKA, 2002, 89 (01) :230-237
[4]   Mann-Whitney test with empirical likelihood methods for pretest-posttest studies [J].
Chen, Min ;
Wu, Changbao ;
Thompson, Mary E. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (02) :360-374
[5]   An imputation based empirical likelihood approach to pretest-posttest studies [J].
Chen, Min ;
Wu, Changbao ;
Thompson, Mary E. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03) :378-402
[6]   Multiply robust imputation procedures for the treatment of item nonresponse in surveys [J].
Chen, Sixia ;
Haziza, David .
BIOMETRIKA, 2017, 104 (02) :439-453
[7]   Semiparametric estimation of treatment effect in a pretest-posttest study with missing data [J].
Davidian, M ;
Tsiatis, AA ;
Leon, S .
STATISTICAL SCIENCE, 2005, 20 (03) :261-282
[8]   THE EFFECT OF SCREENING ON SOME PRETEST POSTTEST TEST VARIANCES [J].
FOLLMANN, DA .
BIOMETRICS, 1991, 47 (02) :763-771
[9]   A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter [J].
Hammer, SM ;
Katzenstein, DA ;
Hughes, MD ;
Gundacker, H ;
Schooley, RT ;
Haubrich, RH ;
Henry, WK ;
Lederman, MM ;
Phair, JP ;
Niu, M ;
Hirsch, MS ;
Merigan, TC ;
Blaschke, TF ;
Simpson, D ;
McLaren, C ;
Rooney, J ;
Salgo, M .
NEW ENGLAND JOURNAL OF MEDICINE, 1996, 335 (15) :1081-1090
[10]   A general framework for quantile estimation with incomplete data [J].
Han, Peisong ;
Kong, Linglong ;
Zhao, Jiwei ;
Zhou, Xingcai .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (02) :305-333