De Novo Metabolic Engineering and the Promise of Synthetic DNA

被引:10
|
作者
Klein-Marcuschamer, Daniel [1 ]
Yadav, Vikramaditya G. [1 ]
Ghaderi, Adel [1 ]
Stephanopoulos, Gregory N. [1 ]
机构
[1] MIT, Dept Chem Engn, Bioinformat & Metabol Engn Lab, Cambridge, MA 02139 USA
来源
BIOSYSTEMS ENGINEERING I: CREATING SUPERIOR BIOCATALYSTS | 2010年 / 120卷
关键词
Gene circuits; Metabolic control; Oligonucleotide synthesis; Regulatory engineering; Synthetic biology; HIGH-LEVEL EXPRESSION; HYALURONIC-ACID PRODUCTION; MESSENGER-RNA STRUCTURE; ZINC-FINGER PROTEINS; GENE-EXPRESSION; ESCHERICHIA-COLI; TETRAHYMENA-PYRIFORMIS; PHENOTYPIC ALTERATION; HOMING ENDONUCLEASES; CODON USAGE;
D O I
10.1007/10_2009_52
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity. Improving a host organism's cellular traits and the potential design of new phenotypes is strongly dependent on the ability to effectively control the organism's genetic machinery. In fact, finely-tuned gene expression is imperative for achieving an optimal balance between pathway expression and cell viability, while avoiding cytotoxicity due to accumulation of certain gene products or metabolites. Early attempts to engineer a cell's metabolism almost exclusively relied on merely deleting or over-expressing single or multiple genes using recombinant DNA, and intervention targets were predominantly selected based on knowledge of the stoichiometry, kinetics, and regulation of the pathway of interest. However, the distributive nature of metabolic control, as opposed to the existence of a single rate-limiting step, predicates the controlled expression of multiple enzymes in several coordinated pathways to achieve the desired flux, and, as such, simple strategies involving either deleting or over-expressing genes are greatly limited in this context. On the other hand, the use of synthetic or modified promoters, riboswitches, tunable intergenic regions, and translation modulators such as internal ribosome entry sequences, upstream open reading frames, optimized mRNA secondary structures, and RNA silencing have been shown to be enormously conducive to achieving the fine-tuning of gene expression. These modifications to the genetic machinery of the host organism can be best achieved via the use of synthetic DNA technology, and the constant improvement in the affordability and quality of oligonucleotide synthesis suggests that these might well become the mainstay of the metabolic engineering toolbox in the years to come. The possibilities that arise with the use of synthetic oligonucleotides will be delineated herein.
引用
收藏
页码:101 / 131
页数:31
相关论文
共 50 条
  • [1] Metabolic Engineering of Escherichia coli for de Novo Production of Betaxanthins
    Hou, Yanan
    Liu, Xue
    Li, Shilin
    Zhang, Xue
    Yu, Sili
    Zhao, Guang-Rong
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (31) : 8370 - 8380
  • [2] Synthetic Biology and Metabolic Engineering
    Stephanopoulos, Gregory
    ACS SYNTHETIC BIOLOGY, 2012, 1 (11): : 514 - 525
  • [3] Systems Metabolic Engineering of Escherichia coli Coculture for De Novo Production of Genistein
    Liu, Xue
    Li, Lingling
    Zhao, Guang-Rong
    ACS SYNTHETIC BIOLOGY, 2022, 11 (05): : 1746 - 1757
  • [4] De Novo Production of Hydroxytyrosol by Metabolic Engineering of Saccharomyces cerevisiae
    Liu, Yingjie
    Liu, Han
    Hu, Haitao
    Ng, Kuan Rei
    Yang, Ruijin
    Lyu, Xiaomei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (24) : 7490 - 7499
  • [5] Advancement of Metabolic Engineering Assisted by Synthetic Biology
    Lee, Hyang-Mi
    Vo, Phuong N. L.
    Na, Dokyun
    CATALYSTS, 2018, 8 (12):
  • [6] Flavonoid Production: Current Trends in Plant Metabolic Engineering and De Novo Microbial Production
    Tariq, Hasnat
    Asif, Saaim
    Andleeb, Anisa
    Hano, Christophe
    Abbasi, Bilal Haider
    METABOLITES, 2023, 13 (01)
  • [7] De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells
    Rodrigo, Guillermo
    Landrain, Thomas E.
    Jaramillo, Alfonso
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (38) : 15271 - 15276
  • [8] Metabolic engineering of Bacillus subtilis for de novo synthesis of 6′-sialyllactose
    Chen, Qi
    Xu, Xianhao
    Sun, Zhengyan
    Wang, Yu
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Lv, Xueqin
    Liu, Long
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2025, 5 (01): : 223 - 236
  • [9] Combining Metabolic and Monoterpene Synthase Engineering for de Novo Production of Monoterpene Alcohols in Escherichia coli
    Lei, Dengwei
    Qiu, Zetian
    Wu, Jihua
    Qiao, Bin
    Qiao, Jianjun
    Zhao, Guang-Rong
    ACS SYNTHETIC BIOLOGY, 2021, 10 (06): : 1531 - 1544
  • [10] Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach
    Liu, Zhenning
    Zhang, Xue
    Lei, Dengwei
    Qiao, Bin
    Zhao, Guang-Rong
    MICROBIAL CELL FACTORIES, 2021, 20 (01)