3D-printed microchip electrophoresis device containing spiral electrodes for integrated capacitively coupled contactless conductivity detection

被引:26
作者
Costa, Brenda M. C. [1 ]
Coelho, Aline G. [1 ]
Beauchamp, Michael J. [2 ]
Nielsen, Jacob B. [2 ]
Nordin, Gregory P. [3 ]
Woolley, Adam T. [2 ]
da Silva, Jose A. F. [1 ,4 ]
机构
[1] Univ Estadual Campinas, Chem Inst, BR-13083861 Campinas, SP, Brazil
[2] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
[3] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
[4] Inst Nacl Ciencia & Tecnol Bioanalit INCTBio, BR-13083861 Campinas, SP, Brazil
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Liquid metal electrodes; Microchip electrophoresis; 3D printing; CAPILLARY-ELECTROPHORESIS; MICROFLUIDIC DEVICES; HIGH-DENSITY;
D O I
10.1007/s00216-021-03494-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this work, we demonstrate for the first time the design and fabrication of microchip electrophoresis devices containing cross-shaped channels and spiral electrodes around the separation channel for microchip electrophoresis and capacitively coupled contactless conductivity detection. The whole device was prepared in a digital light processing-based 3D printer in poly(ethylene glycol) diacrylate resin. Outstanding X-Y resolution of the customized 3D printer ensured the fabrication of 40-gm cross section channels. The spiral channels were filled with melted gallium to form conductive electrodes around the separation channel. We demonstrate the applicability of the device on the separation of sodium, potassium, and lithium cations by microchip electrophoresis.
引用
收藏
页码:545 / 550
页数:6
相关论文
共 30 条
[1]   3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers [J].
Beauchamp, Michael J. ;
Nielsen, Anna V. ;
Gong, Hua ;
Nordin, Gregory P. ;
Woolley, Adam T. .
ANALYTICAL CHEMISTRY, 2019, 91 (11) :7418-7425
[2]   Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices [J].
Beauchamp, Michael J. ;
Nordin, Gregory P. ;
Woolley, Adam T. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2017, 409 (18) :4311-4319
[3]   A simple procedure to produce FDM-based 3D-printed microfluidic devices with an integrated PMMA optical window [J].
Bressan, Lucas P. ;
Adamo, Cristina B. ;
Quero, Reverson F. ;
de Jesus, Dosil P. ;
da Silva, Jose A. F. .
ANALYTICAL METHODS, 2019, 11 (08) :1014-1020
[4]   Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 1. Fundamentals [J].
Brito-Neto, JGA ;
da Silva, JAF ;
Blanes, L ;
do Lago, CL .
ELECTROANALYSIS, 2005, 17 (13) :1198-1206
[5]   Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 2. Peak shape, stray capacitance, noise, and actual electronics [J].
Brito-Neto, JGA ;
da Silva, JAF ;
Blanes, L ;
do Lago, CL .
ELECTROANALYSIS, 2005, 17 (13) :1207-1214
[6]  
da Silva JAF, 2002, J CHROMATOGR A, V942, P249
[7]  
da Silva JAF, 1998, ANAL CHEM, V70, P4339
[8]   In-plane alloy electrodes for capacitively coupled contactless conductivity detection in poly(methylmethacrylate) electrophoretic chips [J].
Gaudry, Adam J. ;
Breadmore, Michael C. ;
Guijt, Rosanne M. .
ELECTROPHORESIS, 2013, 34 (20-21) :2980-2987
[9]   3D printed high density, reversible, chip-to-chip microfluidic interconnects [J].
Gong, Hua ;
Woolley, Adam T. ;
Nordin, Gregory P. .
LAB ON A CHIP, 2018, 18 (04) :639-647
[10]   Custom 3D printer and resin for 18 μm x 20 μm microfluidic flow channels [J].
Gong, Hua ;
Bickham, Bryce P. ;
Woolley, Adam T. ;
Nordin, Gregory P. .
LAB ON A CHIP, 2017, 17 (17) :2899-2909