TIME-PERIODIC LINEAR BOUNDARY VALUE PROBLEMS ON A FINITE INTERVAL

被引:3
|
作者
Fokas, A. S. [1 ]
Pelloni, B. [2 ,3 ]
Smith, D. A. [4 ,5 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[2] Heriot Watt Univ, Edinburgh, Midlothian, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
[4] Yale NUS Coll, Singapore, Singapore
[5] Natl Univ Singapore, Dept Math, Singapore, Singapore
关键词
TRANSFORM METHOD;
D O I
10.1090/qam/1615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large time behaviour of the solution of a linear dispersive PDEs posed on a finite interval, when the prescribed boundary conditions are time periodic. We use the approach pioneered by A. S. Fokas and J. Lenells in The unified method: II. NLS on the half-line with t-periodic boundary conditions, J. Phys. A 45 (2012) for nonlinear integrable PDEs and then applied to linear problems on the half-line in A. S. Fokas and M. C. van der Weele, The unified transform for evolution equations on the half-line with time-periodic boundary conditions, Stud. Appl. Math. 147 (2021) to characterise necessary conditions for the solution of such a problem to be periodic, at least in an asymptotic sense. We then fully describe the periodicity properties of the solution in three important illustrative examples, recovering known results for the second-order cases and establishing new ones for the third order one.
引用
收藏
页码:481 / 506
页数:26
相关论文
共 50 条
  • [1] On time-periodic solutions to parabolic boundary value problems
    Mads Kyed
    Jonas Sauer
    Mathematische Annalen, 2019, 374 : 37 - 65
  • [2] On time-periodic solutions to parabolic boundary value problems
    Kyed, Mads
    Sauer, Jonas
    MATHEMATISCHE ANNALEN, 2019, 374 (1-2) : 37 - 65
  • [3] Fredholm solvability of time-periodic boundary value hyperbolic problems
    Kmit, Irina
    Klyuclanyk, Roman
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 804 - 819
  • [4] Functional A Posteriori Error Estimates for Parabolic Time-Periodic Boundary Value Problems
    Langer, Ulrich
    Repin, Sergey
    Wolfmayr, Monika
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (03) : 353 - 372
  • [5] Numerical methods for time-periodic solutions of nonlinear parabolic boundary value problems
    Pao, CV
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) : 647 - 667
  • [6] Sobolev type inequalities of time-periodic boundary value problems for Heaviside and Thomson cables
    Kazuo Takemura
    Yoshinori Kametaka
    Kohtaro Watanabe
    Atsushi Nagai
    Hiroyuki Yamagishi
    Boundary Value Problems, 2012
  • [7] Sobolev type inequalities of time-periodic boundary value problems for Heaviside and Thomson cables
    Takemura, Kazuo
    Kametaka, Yoshinori
    Watanabe, Kohtaro
    Nagai, Atsushi
    Yamagishi, Hiroyuki
    BOUNDARY VALUE PROBLEMS, 2012, : 1 - 15
  • [8] Well-posed boundary value problems for linear evolution equations on a finite interval
    Pelloni, B
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 136 : 361 - 382
  • [9] Time-periodic solutions to quasilinear hyperbolic systems with time-periodic boundary conditions
    Qu, Peng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 356 - 382
  • [10] Periodic boundary value problems on time scales
    Petr Stehlík
    Advances in Difference Equations, 2005