Comultiplication in link Floer homology and transversely nonsimple links

被引:6
作者
Baldwin, John A. [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
LEGENDRIAN KNOTS; INVARIANTS; SIMPLICITY; EQUATIONS;
D O I
10.2140/agt.2010.10.1417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a word w in the braid group B n, we denote by T(w) the corresponding transverse braid in (R(3); xi(rot)). We exhibit, for any two g, h is an element of B(n), a "comultiplication" map on link Floer homology (Phi) over tilde (HFL) over tilde (m(T(hg)))->(HFL) over tilde (m(T(g)#T(h))) (theta) over tilde (T(g)#T(h)). We use this comultiplication map to generate infinitely many new examples of prime topological link types which are not transversely simple.
引用
收藏
页码:1417 / 1436
页数:20
相关论文
共 31 条
[1]  
BAKER K, ARXIV08030758
[2]  
BAKER K, 2008, MATH RES LETT, V273
[3]  
Baldwin JA, 2008, MATH RES LETT, V15, P273
[4]  
BENNEQUIN D, 1983, ASTERISQUE, P87
[5]   Stabilization in the braid groups II: Transversal simplicity of knots [J].
Birman, Joan S. ;
Menasco, William W. .
GEOMETRY & TOPOLOGY, 2006, 10 :1425-1452
[6]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[7]   STUDYING LINKS VIA CLOSED BRAIDS .4. COMPOSITE LINKS AND SPLIT LINKS [J].
BIRMAN, JS ;
MENASCO, WW .
INVENTIONES MATHEMATICAE, 1990, 102 (01) :115-139
[8]  
Eliashberg Y., 1993, Topological Methods in Modern Mathematics, P171
[9]   Chekanov-Eliashberg invariants and transverse approximations of Legendrian knots [J].
Epstein, J ;
Fuchs, D ;
Meyer, M .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (01) :89-106
[10]  
Etnyre J. B., 2001, J. Symplect. Geom, V1, P63