Global properties of infectious disease models with nonlinear incidence

被引:277
作者
Korobeinikov, Andrei [1 ]
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Lab Nonlinear Sci & Comp, Sapporo, Hokkaido 0600812, Japan
基金
日本学术振兴会;
关键词
direct Lyapunov method; Lyapunov function; endemic equilibrium state; global stability; nonlinear incidence; 92D30; 34D20;
D O I
10.1007/s11538-007-9196-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider global properties for the classical SIR, SIRS and SEIR models of infectious diseases, including the models with the vertical transmission, assuming that the horizontal transmission is governed by an unspecified function f(S,I). We construct Lyapunov functions which enable us to find biologically realistic conditions sufficient to ensure existence and uniqueness of a globally asymptotically stable equilibrium state. This state can be either endemic, or infection-free, depending on the value of the basic reproduction number.
引用
收藏
页码:1871 / 1886
页数:16
相关论文
共 20 条
[11]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653
[12]  
Korobeinikov A, 2004, MATH BIOSCI ENG, V1, P57
[13]   Non-linear incidence and stability of infectious disease models [J].
Korobeinikov, A ;
Maini, PK .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2005, 22 (02) :113-128
[15]  
Lefschetz J., 1961, STABILITY LYAPUNOVS
[16]  
LI MY, 1999, CAN APPL MATH QUORT, P7
[17]   INFLUENCE OF NONLINEAR INCIDENCE RATES UPON THE BEHAVIOR OF SIRS EPIDEMIOLOGIC MODELS [J].
LIU, WM ;
LEVIN, SA ;
IWASA, Y .
JOURNAL OF MATHEMATICAL BIOLOGY, 1986, 23 (02) :187-204
[18]   DYNAMIC BEHAVIOR OF EPIDEMIOLOGIC MODELS WITH NONLINEAR INCIDENCE RATES [J].
LIU, WM ;
HETHCOTE, HW ;
LEVIN, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1987, 25 (04) :359-380
[19]  
Lyapunov A. M., 1992, GEN PROBLEM STABILIT
[20]   Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission [J].
van den Driessche, P ;
Watmough, J .
MATHEMATICAL BIOSCIENCES, 2002, 180 :29-48