Global properties of infectious disease models with nonlinear incidence

被引:277
作者
Korobeinikov, Andrei [1 ]
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Lab Nonlinear Sci & Comp, Sapporo, Hokkaido 0600812, Japan
基金
日本学术振兴会;
关键词
direct Lyapunov method; Lyapunov function; endemic equilibrium state; global stability; nonlinear incidence; 92D30; 34D20;
D O I
10.1007/s11538-007-9196-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider global properties for the classical SIR, SIRS and SEIR models of infectious diseases, including the models with the vertical transmission, assuming that the horizontal transmission is governed by an unspecified function f(S,I). We construct Lyapunov functions which enable us to find biologically realistic conditions sufficient to ensure existence and uniqueness of a globally asymptotically stable equilibrium state. This state can be either endemic, or infection-free, depending on the value of the basic reproduction number.
引用
收藏
页码:1871 / 1886
页数:16
相关论文
共 20 条
[1]  
ANDERSON R M, 1991
[2]  
Barbashin E. A., 1970, INTRO THEORY STABILI
[3]   THE DYNAMICS OF INSECT-PATHOGEN INTERACTIONS IN STAGE-STRUCTURED POPULATIONS [J].
BRIGGS, CJ ;
GODFRAY, HCJ .
AMERICAN NATURALIST, 1995, 145 (06) :855-887
[4]  
BROWN GC, 1995, J INVERTEBR PATHOL, V65, P10, DOI 10.1006/jipa.1995.1002
[5]  
Busenberg S., 1993, Vertically Transmitted Disease: Models and Dynamics
[6]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[7]   Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population [J].
Derrick, WR ;
Van Den Driessche, P .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2003, 3 (02) :299-309
[8]   Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model [J].
Feng, ZL ;
Thieme, HR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (03) :803-833
[9]   AN EPIDEMIOLOGICAL MODEL WITH A DELAY AND A NONLINEAR INCIDENCE RATE [J].
HETHCOTE, HW ;
LEWIS, MA ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :49-64
[10]   SOME EPIDEMIOLOGIC MODELS WITH NONLINEAR INCIDENCE [J].
HETHCOTE, HW ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (03) :271-287