Memristive switching mechanism of vertically aligned carbon nanotubes

被引:28
作者
Il'ina, Marina V. [1 ]
Il'in, Oleg I. [1 ]
Blinov, Yuriy F. [1 ]
Smirnov, Vladimir A. [1 ]
Kolomiytsev, Alexey S. [1 ]
Fedotov, Alexander A. [1 ]
Konoplev, Boris G. [1 ]
Ageev, Oleg A. [1 ]
机构
[1] Southern Fed Univ, Inst Nanotechnol Elect & Elect Equipment Engn, Shevchenko St 2, Taganrog 347922, Russia
基金
俄罗斯基础研究基金会;
关键词
DEFORMATION;
D O I
10.1016/j.carbon.2017.07.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper proposes a memristive switching mechanism of an individual vertically aligned carbon nanotube related to the formation and subsequent redistribution of non-uniform elastic strain and piezoelectric charge in the nanotube under the influence of an external electric field. We experimentally confirmed the occurrence of an internal electric field in the carbon nanotube under non-uniform elastic strain and its dependence on the applied voltage. Our findings also revealed the dependence of resistive switching parameters of strained nanotubes on their mechanical and geometric parameters, that result in an opportunity to create memristive structures based on vertically aligned carbon nanotubes with reproducible parameters. The results of the study showed that vertically aligned carbon nanotubes can be used to create memristive structures with planar dimensions, defined by the diameter of nanotubes, that would outperform metal-oxide memristors in terms of performance, scalability and efficiency. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:514 / 524
页数:11
相关论文
共 42 条
[11]   Resistance switching memories are memristors [J].
Chua, Leon .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (04) :765-783
[12]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+
[13]   A local field emission study of partially aligned carbon-nanotubes by atomic force microscope probe [J].
Di Bartolomeo, A. ;
Scarfato, A. ;
Giubileo, F. ;
Bobba, F. ;
Biasiucci, M. ;
Cucolo, A. M. ;
Santucci, S. ;
Passacantando, M. .
CARBON, 2007, 45 (15) :2957-2971
[14]   Mechanical properties of a carbon nanotube fixed at a tip apex:: A frequency-modulated atomic force microscopy study -: art. no. 035445 [J].
Dietzel, D ;
Marsaudon, S ;
Aimé, JP ;
Nguyen, CV ;
Couturier, G .
PHYSICAL REVIEW B, 2005, 72 (03)
[15]  
Gady W. G., 1964, PIEZOELECTRICITY INT, V1
[16]   Impacts of structure defects and carboxyl and carbonyl functional groups on the work function of multiwalled carbon nanotubes [J].
Gong, Bo ;
Ikematsu, Akitoshi ;
Waki, Keiko .
CARBON, 2017, 114 :526-532
[17]   Memristive model of hysteretic field emission from carbon nanotube arrays [J].
Gorodetskiy, Dmitriy V. ;
Gusel'nikov, Artem V. ;
Shevchenko, Sergey N. ;
Kanygin, Mikhail A. ;
Okotrub, Alexander V. ;
Pershin, Yuriy V. .
JOURNAL OF NANOPHOTONICS, 2016, 10 (01)
[18]   Radiation Effects in Nanoelectronic Elements [J].
Gromov, D. V. ;
Elesin, V. V. ;
Petrov, G. V. ;
Bobrinetskii, I. I. ;
Nevolin, V. K. .
SEMICONDUCTORS, 2010, 44 (13) :1699-1702
[19]   Nanoelectromechanical switches with vertically aligned carbon nanotubes [J].
Jang, JE ;
Cha, SN ;
Choi, Y ;
Amaratunga, GAJ ;
Kang, DJ ;
Hasko, DG ;
Jung, JE ;
Kim, JM .
APPLIED PHYSICS LETTERS, 2005, 87 (16) :1-3
[20]   A carbon-nanotube-based nanorelay [J].
Kinaret, JM ;
Nord, T ;
Viefers, S .
APPLIED PHYSICS LETTERS, 2003, 82 (08) :1287-1289