(m, n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates

被引:15
作者
Butt, Saad Ihsan [1 ]
Akdemir, Ahmet Ocak [2 ]
Nadeem, Muhammad [1 ]
Mlaiki, Nabil [3 ]
Iscan, Imdat [4 ]
Abdeljawad, Thabet [3 ,5 ,6 ]
机构
[1] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[2] Ibrahim Cecen Univ Agri, Fac Sci & Arts, Dept Math, Agri, Turkey
[3] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[4] Giresun Univ, Fac Sci & Arts, Dept Math, Giresun, Turkey
[5] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[6] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 05期
关键词
Hadamard-type inequality; co-ordinates; (m; n)-harmonically polynomial convex functions; RECTANGLE;
D O I
10.3934/math.2021275
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we have introduced a new concept called (m, n)-harmonically polynomial convex functions on the co-ordinates. Then, we have demonstrated some properties of this definition. Based on the definition and some elementary analysis process, we have proved a new Hadamard type integral inequality on the coordinates for (m, n)-harmonically polynomial convex functions. Finally, we have established Hadamard type inequality for differentiable (m, n)-Harmonically polynomial convex functions. We have also given some special cases for bounded functions.
引用
收藏
页码:4677 / 4690
页数:14
相关论文
共 16 条
[1]   On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals [J].
Abdeljawad, Thabet ;
Ali, Muhammad Aamir ;
Mohammed, Pshtiwan Othman ;
Kashuri, Artion .
AIMS MATHEMATICS, 2021, 6 (01) :712-725
[2]  
Akdemir, 2016, TURKISH J SCI, V1, P41, DOI DOI 10.1186/1029-242X-2012-21
[3]  
Alomari M., 2008, INT MATH FORUM, V3, P1965
[4]  
Alomari M., 2008, Int. J. Math. Anal, V2, P629
[5]   New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions [J].
Awan, Muhammad Uzair ;
Akhtar, Nousheen ;
Iftikhar, Sabah ;
Noor, Muhammad Aslam ;
Chu, Yu-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[6]  
Bakula MK, 2006, TAIWAN J MATH, V10, P1271
[7]   On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane [J].
Dragomir, SS .
TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (04) :775-788
[8]   Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function [J].
Han, Jiangfeng ;
Mohammed, Pshtiwan Othman ;
Zeng, Huidan .
OPEN MATHEMATICS, 2020, 18 :794-806
[9]  
Mohammed P. O., 2020, SYMMETRY BASEL, V12, P1, DOI DOI 10.3390/sym12040595
[10]   Opial integral inequalities for generalized fractional operators with nonsingular kernel [J].
Mohammed, Pshtiwan Othman ;
Abdeljawad, Thabet .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)