A Combined Fully Convolutional Networks and Deformable Model for Automatic Left Ventricle Segmentation Based on 3D Echocardiography

被引:31
作者
Dong, Suyu [1 ]
Luo, Gongning [1 ]
Wang, Kuanquan [1 ]
Cao, Shaodong [2 ]
Li, Qince [1 ]
Zhang, Henggui [1 ,3 ,4 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Med Univ, Hosp 4, Dept Radiol, Harbin 150001, Heilongjiang, Peoples R China
[3] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England
[4] Space Inst Southern China, Shenzhen, Guangdong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
DEEP LEARNING ARCHITECTURES; ACTIVE APPEARANCE MODELS; SPARSE REPRESENTATION; WHOLE MYOCARDIUM; CONTOUR MODEL; CARDIAC MR; LEVEL SET; HEART; 2D-ECHOCARDIOGRAPHY; TRACKING;
D O I
10.1155/2018/5682365
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Segmentation of the left ventricle (LV) from three-dimensional echocardiography (3DE) plays a key role in the clinical diagnosis of the LV function. In this work, we proposed a new automatic method for the segmentation of LV, based on the fully convolutional networks (FCN) and deformable model. This method implemented a coarse-to-fine framework. Firstly, a new deep fusion network based on feature fusion and transfer learning, combining the residual modules, was proposed to achieve coarse segmentation of LV on 3DE. Secondly, we proposed a method of geometrical model initialization for a deformable model based on the results of coarse segmentation. Thirdly, the deformable model was implemented to further optimize the segmentation results with a regularization item to avoid the leakage between left atria and left ventricle to achieve the goal of fine segmentation of LV. Numerical experiments have demonstrated that the proposed method outperforms the state-of-the-art methods on the challenging CETUS benchmark in the segmentation accuracy and has a potential for practical applications.
引用
收藏
页数:16
相关论文
共 59 条
[1]  
[Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.348
[2]  
[Anonymous], 2016, RefineNet: Multi-path refinement networks for high-resolution semantic segmentation
[3]  
[Anonymous], 2014, MIDAS J, DOI DOI 10.54294/WU2MI1
[4]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[5]  
Barbosa D, 2012, 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), P1088, DOI 10.1109/ISBI.2012.6235748
[6]  
Barbosa D. F. D., 2014, P MICCAI CHALL ECH 3
[7]   Real-time 3D interactive segmentation of echocardiographic data through user-based deformation of B-spline explicit active surfaces [J].
Barbosa, Daniel ;
Heyde, Brecht ;
Cikes, Maja ;
Dietenbeck, Thomas ;
Claus, Piet ;
Friboulet, Denis ;
Bernard, Olivier ;
D'hooge, Jan .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2014, 38 (01) :57-67
[8]   Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography [J].
Bernard, Olivier ;
Bosch, Johan G. ;
Heyde, Brecht ;
Alessandrini, Martino ;
Barbosa, Daniel ;
Camarasu-Pop, Sorina ;
Cervenansky, Frederic ;
Valette, Sebastien ;
Mirea, Oana ;
Bernier, Michel ;
Jodoin, Pierre-Marc ;
Domingos, Jaime Santo ;
Stebbing, Richard V. ;
Keraudren, Kevin ;
Oktay, Ozan ;
Caballero, Jose ;
Shi, Wei ;
Rueckert, Daniel ;
Milletari, Fausto ;
Ahmadi, Seyed-Ahmad ;
Smistad, Erik ;
Lindseth, Frank ;
van Stralen, Maartje ;
Wang, Chen ;
Smedby, Orjan ;
Donal, Erwan ;
Monaghan, Mark ;
Papachristidis, Alex ;
Geleijnse, Marcel L. ;
Galli, Elena ;
D'hooge, Jan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (04) :967-977
[9]   Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data [J].
Carneiro, Gustavo ;
Nascimento, Jacinto C. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2592-2607
[10]   The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods [J].
Carneiro, Gustavo ;
Nascimento, Jacinto C. ;
Freitas, Antonio .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) :968-982