Fast Grobner basis computation and polynomial reduction for generic bivariate ideals

被引:11
作者
van der Hoeven, Joris [1 ,2 ]
Larrieu, Robin [1 ,2 ]
机构
[1] Ecole Polytech, UMR 7161, LIX, Lab Informat,CNRS, Campus Ecole Polytech,1 Rue Honore Estienne Orves, F-91120 Palaiseau, France
[2] Ecole Polytech, Campus Ecole Polytech,1 Rue Honore Estienne Orves, F-91120 Palaiseau, France
关键词
Polynomial reduction; Grobner basis; Complexity; Algorithm; FAST MULTIPLICATION; BASES;
D O I
10.1007/s00200-019-00389-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let A, B is an element of K[ X, Y] be two bivariate polynomials over an effective field K, and let G be the reduced Grobner basis of the ideal I := < A, B > generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm for the reduction of P. K[X, Y] modulo G, where "quasi-optimal" is meant in terms of the size of the input A, B, P. Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra A := K[ X, Y] / < A, B >, both in quasi-linear time. Moreover, we show that G itself can be computed in quasi-linear time with respect to the output size.
引用
收藏
页码:509 / 539
页数:31
相关论文
共 26 条
[1]  
[Anonymous], 2013, MODERN COMPUTER ALGE
[2]  
Bardet Magali, 2014, J SYMB COMPUT, V1-24
[3]  
Becker T., 1993, Graduate texts in mathematics, V141
[4]  
Buchberger B., 1965, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal
[5]   ON FAST MULTIPLICATION OF POLYNOMIALS OVER ARBITRARY ALGEBRAS [J].
CANTOR, DG ;
KALTOFEN, E .
ACTA INFORMATICA, 1991, 28 (07) :693-701
[6]  
Faugere J.-C., 2002, ISSAC 2002. Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, P75, DOI 10.1145/780506.780516
[7]  
FAUGERE J. - C., 2013, ARXIV13046039
[8]   EFFICIENT COMPUTATION OF ZERO-DIMENSIONAL GROBNER BASES BY CHANGE OF ORDERING [J].
FAUGERE, JC ;
GIANNI, P ;
LAZARD, D ;
MORA, T .
JOURNAL OF SYMBOLIC COMPUTATION, 1993, 16 (04) :329-344
[9]   A new efficient algorithm for computing Grobner bases (F4) [J].
Faugére, JC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 139 (1-3) :61-88
[10]  
Fischer M.J., 1974, P 5 ACM S THEOR COMP, V9, P67