On generalized harmonic number sums

被引:17
作者
Coffey, Mark W. [1 ]
Lubbers, Nicholas [1 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
关键词
Generalized harmonic number; Polygamma function; Polylogarithm function; CONSTANTS; REPRESENTATIONS;
D O I
10.1016/j.amc.2010.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We evaluate generalized harmonic number sums with parameter in terms of values of polylogarithm functions, and several examples are given. Instances of such sums occur in diverse areas including analytic number theory, and in calculations of high energy, nuclear, and atomic physics. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:689 / 698
页数:10
相关论文
共 22 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   Series representations for some mathematical constants [J].
Alzer, Horst ;
Karayannakis, Dimitri ;
Srivastava, H. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) :145-162
[3]  
[Anonymous], 1985, Ramanujan's Notebooks: Part 1
[4]  
[Anonymous], 1934, Am. Math. Mon
[5]   On the rapid computation of various polylogarithmic constants [J].
Bailey, D ;
Borwein, P ;
Plouffe, S .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :903-913
[6]  
Berndt B., 1994, RAMANUJANS NOTEBOO 4
[7]  
Blumlein J., 1999, Phys. Rev. D, V60, DOI DOI 10.1103/PHYSREVD.60.014018
[8]  
Coffey MW, 2008, UTILITAS MATHEMATICA, V76, P79
[9]   New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants [J].
Coffey, Mark W. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2091) :711-731
[10]   On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams [J].
Coffey, MW .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 183 (01) :84-100