Extraction of black hole coalescence waveforms from noisy data

被引:12
作者
Green, Martin A. [1 ]
Moffat, J. W. [1 ,2 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
基金
美国国家科学基金会;
关键词
Gravitational waves; Black hole coalescence; Signal extraction;
D O I
10.1016/j.physletb.2018.08.009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe an independent analysis of LIGO data for black hole coalescence events. Gravitational wave strain waveforms are extracted directly from the data using a filtering method that exploits the observed or expected time-dependent frequency content. Statistical analysis of residual noise, after filtering out spectral peaks (and considering finite bandwidth), shows no evidence of non-Gaussian behaviour. There is also no evidence of anomalous causal correlation between noise signals at the Hanford and Livingston sites. The extracted waveforms are consistent with black hole coalescence template waveforms provided by LIGO. Simulated events, with known signals injected into real noise, are used to determine uncertainties due to residual noise and demonstrate that our results are unbiased. Conceptual and numerical differences between our RMS signal-to-noise ratios (SNRs) and the published matched-filter detection SNRs are discussed. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:312 / 323
页数:12
相关论文
共 22 条
[11]  
[Anonymous], 10 LISA S U FLOR GAI
[12]  
ANSCOMBE FJ, 1983, BIOMETRIKA, V70, P227
[13]   Validating gravitational-wave detections: The Advanced LIGO hardware injection system [J].
Biwer, C. ;
Barker, D. ;
Batch, J. C. ;
Betzwieser, J. ;
Fisher, R. P. ;
Goetz, E. ;
Kandhasamy, S. ;
Karki, S. ;
Kissel, J. S. ;
Lundgren, A. P. ;
Macleod, D. M. ;
Mullavey, A. ;
Riles, K. ;
Rollins, J. G. ;
Thorne, K. A. ;
Thrane, E. ;
Abbott, T. D. ;
Allen, B. ;
Brown, D. A. ;
Charlton, P. ;
Crowder, S. G. ;
Fritschel, P. ;
Kanner, J. B. ;
Landry, M. ;
Lazzaro, C. ;
Millhouse, M. ;
Pitkin, M. ;
Savage, R. L. ;
Shawhan, P. ;
Shoemaker, D. H. ;
Smith, J. R. ;
Sun, L. ;
Veitch, J. ;
Vitale, S. ;
Weinstein, A. J. ;
Cornish, N. ;
Essick, R. C. ;
Fays, M. ;
Katsavounidis, E. ;
Lange, J. ;
Littenberg, T. B. ;
Lynch, R. ;
Meyers, P. M. ;
Pannarale, F. ;
Prix, R. ;
O'Shaughnessy, R. ;
Sigg, D. .
PHYSICAL REVIEW D, 2017, 95 (06)
[14]   On the time lags of the LIGO signals [J].
Creswell, James ;
von Hausegger, Sebastian ;
Jackson, Andrew D. ;
Liu, Hao ;
Naselsky, Pavel .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (08)
[15]   GRAVITATIONAL-WAVES FROM MERGING COMPACT BINARIES - HOW ACCURATELY CAN ONE EXTRACT THE BINARYS PARAMETERS FROM THE INSPIRAL WAVE-FORM [J].
CUTLER, C ;
FLANAGAN, EE .
PHYSICAL REVIEW D, 1994, 49 (06) :2658-2697
[16]   TESTS FOR DEPARTURE FROM NORMALITY - EMPIRICAL RESULTS FOR DISTRIBUTIONS OF B2 AND SQUARE ROOT B1 [J].
DAGOSTIN.R ;
PEARSON, ES .
BIOMETRIKA, 1973, 60 (03) :613-622
[17]   A SUGGESTION FOR USING POWERFUL AND INFORMATIVE TESTS OF NORMALITY [J].
DAGOSTINO, RB ;
BELANGER, A ;
DAGOSTINO, RB .
AMERICAN STATISTICIAN, 1990, 44 (04) :316-321
[18]   Model waveform accuracy standards for gravitational wave data analysis [J].
Lindblom, Lee ;
Owen, Benjamin J. ;
Brown, Duncan A. .
PHYSICAL REVIEW D, 2008, 78 (12)
[19]   A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries [J].
McKechan, D. J. A. ;
Robinson, C. ;
Sathyaprakash, B. S. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (08)
[20]   Transient analysis with fast Wilson-Daubechies time-frequency transform [J].
Necula, V. ;
Klimenko, S. ;
Mitselmakher, G. .
9TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 9) AND THE 2011 NUMERICAL RELATIVITY - DATA ANALYSIS MEETING (NRDA 2011), 2012, 363