SCFTIR1/AFB-Based Auxin Perception: Mechanism and Role in Plant Growth and Development

被引:371
作者
Salehin, Mohammad
Bagchi, Rammyani
Estelle, Mark [1 ]
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
OF-FUNCTION MUTATION; FUNCTIONAL GENOMIC ANALYSIS; LATERAL ROOT-FORMATION; GENE FAMILY-MEMBERS; BOX PROTEIN TIR1; TRANSCRIPTION FACTOR; AUX/IAA PROTEINS; ARABIDOPSIS-THALIANA; DIRECTED MUTAGENESIS; CRISPR/CAS SYSTEM;
D O I
10.1105/tpc.114.133744
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Auxin regulates a vast array of growth and developmental processes throughout the life cycle of plants. Auxin responses are highly context dependent and can involve changes in cell division, cell expansion, and cell fate. The complexity of the auxin response is illustrated by the recent finding that the auxin-responsive gene set differs significantly between different cell types in the root. Auxin regulation of transcription involves a core pathway consisting of the TIR1/AFB F-box proteins, the Aux/IAA transcriptional repressors, and the ARF transcription factors. Auxin is perceived by a transient coreceptor complex consisting of a TIR1/AFB protein and an Aux/IAA protein. Auxin binding to the coreceptor results in degradation of the Aux/IAAs and derepression of ARF-based transcription. Although the basic outlines of this pathway are now well established, it remains unclear how specificity of the pathway is conferred. However, recent results, focusing on the ways that these three families of proteins interact, are starting to provide important clues.
引用
收藏
页码:9 / 19
页数:11
相关论文
共 140 条
[1]   Early genes and auxin action [J].
Abel, S ;
Theologis, A .
PLANT PHYSIOLOGY, 1996, 111 (01) :9-17
[2]   PIN-Dependent Auxin Transport: Action, Regulation, and Evolution [J].
Adamowski, Maciek ;
Friml, Jiri .
PLANT CELL, 2015, 27 (01) :20-32
[3]  
Arteca R.N., 1996, PLANT GROWTH SUBSTAN
[4]   Systems Analysis of Auxin Transport in the Arabidopsis Root Apex [J].
Band, Leah R. ;
Wells, Darren M. ;
Fozard, John A. ;
Ghetiu, Teodor ;
French, Andrew P. ;
Pound, Michael P. ;
Wilson, Michael H. ;
Yu, Lei ;
Li, Wenda ;
Hijazi, Hussein I. ;
Oh, Jaesung ;
Pearce, Simon P. ;
Perez-Amador, Miguel A. ;
Yun, Jeonga ;
Kramer, Eric ;
Alonso, Jose M. ;
Godin, Christophe ;
Vernoux, Teva ;
Hodgman, T. Charlie ;
Pridmore, Tony P. ;
Swarup, Ranjan ;
King, John R. ;
Bennett, Malcolm J. .
PLANT CELL, 2014, 26 (03) :862-875
[5]   A map of cell type-specific auxin responses [J].
Bargmann, Bastiaan O. R. ;
Vanneste, Steffen ;
Krouk, Gabriel ;
Nawy, Tal ;
Efroni, Idan ;
Shani, Eilon ;
Choe, Goh ;
Friml, Jiri ;
Bergmann, Dominique C. ;
Estelle, Mark ;
Birnbaum, Kenneth D. .
MOLECULAR SYSTEMS BIOLOGY, 2013, 9
[6]   Phenotypes Associated with Down-Regulation of Sl-IAA27 Support Functional Diversity Among Aux/IAA Family Members in Tomato [J].
Bassa, Carole ;
Mila, Isabelle ;
Bouzayen, Mondher ;
Audran-Delalande, Corinne .
PLANT AND CELL PHYSIOLOGY, 2012, 53 (09) :1583-1595
[7]   Auxin: The looping star in plant development [J].
Benjamins, Rene ;
Scheres, Ben .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :443-465
[8]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[9]   A novel sensor to map auxin response and distribution at high spatio-temporal resolution [J].
Brunoud, Geraldine ;
Wells, Darren M. ;
Oliva, Marina ;
Larrieu, Antoine ;
Mirabet, Vincent ;
Burrow, Amy H. ;
Beeckman, Tom ;
Kepinski, Stefan ;
Traas, Jan ;
Bennett, Malcolm J. ;
Vernoux, Teva .
NATURE, 2012, 482 (7383) :103-U132
[10]  
Villalobos LIAC, 2012, NAT CHEM BIOL, V8, P477, DOI [10.1038/NCHEMBIO.926, 10.1038/nchembio.926]