A real analyticity result for symmetric functions of the eigenvalues of a domain-dependent Neumann problem for the Laplace operator

被引:12
作者
Lamberti, Pier Domenico [1 ]
Lanza de Cristoforis, Massimo [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
关键词
Neumann eigenvalue and eigenvector; Laplace operator; domain perturbation; special nonlinear operator;
D O I
10.1007/s00009-007-0128-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open connected subset of R-n for which the imbedding of the Sobolev space W-1,W-2(Omega) into the space L-2(Omega) is compact. We consider the Neumann eigenvalue problem for the Laplace operator in the open subset phi(Omega) of R-n, where phi is a Lipschitz continuous homeomorphism of Omega onto phi(Omega). Then we prove a result of real analytic dependence for symmetric functions of the eigenvalues upon variation of phi.
引用
收藏
页码:435 / 449
页数:15
相关论文
共 16 条