A Multi-class Hand Gesture Recognition in Complex Background using Sequential Minimal Optimization

被引:0
作者
Sheenu [1 ]
Joshi, Garima [1 ]
Vig, Renu [1 ]
机构
[1] Panjab Univ, UIET, ECE Dept, Chandigarh, India
来源
2015 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC) | 2015年
关键词
hand gesture; complex background; Jochentriesch; histograms of orientation gradient; sequential minimal optimization; SYSTEM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
this paper presents a novel approach for hand gesture recognition in complex background images. The method is based on Histograms of Orientation Gradient (HOG) which in independent of segmentation task followed by Sequential minimal Optimization (SMO). In our experiment we use benchmark Jochen-Triesch database for hand gesture recognition under complex and clutter background. In addition to this perturbation is added to images to increase the database. The vector size is reduced by increasing the number of pixels per cell without compromising accuracy. The proposed system gives overall recognition rate of 93.12% which demonstrates the robustness of the system under illumination changes, rotation and translation.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 50 条
  • [21] Hand number gesture recognition using recognized hand parts in depth images
    Dinh, Dong-Luong
    Lee, Sungyoung
    Kim, Tae-Seong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (02) : 1333 - 1348
  • [22] A Novel Approach to Hand Gesture Recognition for Virtual System Based on Adaptive Background Model
    Tan, Wenjun
    Wu, Chengdong
    Zhao, Shuying
    Xie, Hualong
    E-ENGINEERING & DIGITAL ENTERPRISE TECHNOLOGY VII, PTS 1 AND 2, 2009, 16-19 : 891 - 895
  • [23] Implementing Hand Gesture Recognition Using EMG on the Zynq Circuit
    Kerdjidj, O.
    Amara, K.
    Harizi, F.
    Boumridja, H.
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 10054 - 10061
  • [24] HAND GESTURE RECOGNITION AND MOTION ESTIMATION USING THE KINECT SENSOR
    Wang, Bin
    Li, Yunze
    Lang, Haoxiang
    Wang, Ying
    MECHATRONIC SYSTEMS AND CONTROL, 2020, 48 (01): : 17 - 24
  • [25] Hand Gesture Detection and Recognition Using Principal Component Analysis
    Dardas, Nasser H.
    Petriu, Emil M.
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIMSA), 2011, : 11 - 16
  • [26] Modeling and recognition of hand gesture using colored Petri nets
    Nam, Y
    Wohn, K
    Lee-Kwang, H
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1999, 29 (05): : 514 - 521
  • [27] Hand Gesture Recognition Using Movidius Neural Compute Stick
    Ab Hamid, Muhammad Fawwaz
    Zaman, Fadhlan Hafizhelmi Kamaru
    2019 IEEE 9TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2019, : 510 - 514
  • [28] Hand Region Extraction and Gesture Recognition using entropy analysis
    Shin, Jae-Ho
    Lee, Jong-Shill
    Kil, Se-Kee
    Shen, Dong-Fan
    Ryu, Je-Goon
    Lee, Eung-Hyuk
    Min, Hong-Ki
    Hong, Seung-Hong
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2006, 6 (2A): : 216 - 222
  • [29] Real time Hand Gesture Recognition using AVR Microcontroller
    Shakunthaladevi, M.
    Revathi, R. B.
    2014 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2014,
  • [30] EMG based Hand Gesture Recognition using Deep Learning
    Ozdemir, Mehmet Akif
    Kisa, Deniz Hande
    Guren, Onan
    Onan, Aytug
    Akan, Aydin
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,