Comparison and validation of various turbulence models for U-bend flow with a magnetic resonance velocimetry experiment

被引:46
作者
Han, Yong [1 ]
Zhou, Ling [1 ]
Bai, Ling [1 ]
Shi, Weidong [2 ]
Agarwal, Ramesh [3 ]
机构
[1] Jiangsu Univ, Natl Res Ctr Pumps, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Nantong Univ, Sch Mech Engn, Nantong 226019, Peoples R China
[3] Washington Univ, Dept Mech Engn & Mat Sci, St Louis, MO 63130 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
VELOCITY-MEASUREMENTS; SIMULATIONS; COMPUTATION; FIELD;
D O I
10.1063/5.0073910
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Turbulence modeling plays an important role in the accurate prediction of turbulent fluid motion in computational fluid dynamics simulations using the Reynolds-averaged Navier-Stokes equations. A new one-equation Wray-Agarwal (WA) turbulence model has recently been developed by the present authors to improve the prediction of nonequilibrium turbulent flows with large separation and curvature. In this paper, the WA turbulence model is employed to simulate the internal turbulent flow characteristics in a U-bend, and the computed results are compared with experimental data. The results obtained from four other commonly used turbulence models, viz., the one-equation Spalart-Allmaras, two-equation standard k-epsilon, renormalization group k-epsilon, and shear stress transport k-omega models, are also compared. Detailed experimental data are obtained using magnetic resonance velocimetry. The results computed with the five different turbulence models show that the WA turbulence model gives the highest accuracy in predicting the complex three-dimensional turbulent characteristics of flow with large curvature in a U-bend.
引用
收藏
页数:11
相关论文
共 45 条
[1]  
Agarwal R. K, 2019, 20190082 AIAA, DOI DOI 10.2514/6.2019-0082
[2]  
Agarwal R. K, 2019, 20192923 AIAA
[3]  
Barth T, 1991, 1991610 AIAA
[4]   The 2019 MRV challenge: turbulent flow through a U-bend [J].
Benson, Michael J. ;
Banko, Andrew J. ;
Elkins, Christopher J. ;
An, Don-Gwan ;
Song, Simon ;
Bruschewski, Martin ;
Grundmann, Sven ;
Borup, Daniel D. ;
Eaton, John K. .
EXPERIMENTS IN FLUIDS, 2020, 61 (06)
[5]   Particle image velocimetry (PIV) uncertainty quantification using moment of correlation (MC) plane [J].
Bhattacharya, Sayantan ;
Charonko, John J. ;
Vlachos, Pavios P. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (11)
[6]   An urban dispersion inspired scenario for CFD model validation [J].
Brown, Alexander L. ;
Clemenson, Michael D. ;
Benson, Michael ;
Elkins, Christopher ;
Jones, Samuel T. .
FIRE SAFETY JOURNAL, 2021, 120
[7]   Commissioning of an MRI test facility for CFD-grade flow experiments in replicas of nuclear fuel assemblies and other reactor components [J].
Bruschewski, Martin ;
John, Kristine ;
Wuestenhagen, Carolin ;
Rehm, Markus ;
Hadzic, Hidajet ;
Pohl, Peter ;
Grundmann, Sven .
NUCLEAR ENGINEERING AND DESIGN, 2021, 375
[8]   Direct numerical simulations of turbulent reacting flows with shock waves and stiff chemistry using many-core/GPU acceleration [J].
Desai, Swapnil ;
Kim, Yu Jeong ;
Song, Wonsik ;
Luong, Minh Bau ;
Perez, Francisco E. Hernandez ;
Sankaran, Ramanan ;
Im, Hong G. .
COMPUTERS & FLUIDS, 2021, 215
[9]   Volumetric velocimetry for fluid flows [J].
Discetti, Stefano ;
Coletti, Filippo .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2018, 29 (04)
[10]   The impact of geometric parameters of a S-type Pitot tube on the flow velocity measurements for greenhouse gas emission monitoring [J].
Doan Trang Nguyen ;
Choi, Yong Moon ;
Lee, Saeng Hee ;
Kang, Woong .
FLOW MEASUREMENT AND INSTRUMENTATION, 2019, 67 :10-22