Cu2S nanowires and MnS/Cu2S nanojunctions derived from γ-MnS nanowires via selective cation-exchange reaction

被引:3
|
作者
Xu, G. [1 ,2 ]
Zhu, Y. L. [1 ]
Ma, X. L. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Shenyang Univ Technol, Sch Sci, Shenyang 110870, Peoples R China
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2011年 / 208卷 / 01期
基金
中国国家自然科学基金;
关键词
cation-exchange reactions; Cu2S nanowires; MnS; nanojunctions; TEM; CHEMICAL TRANSFORMATION; NANOCRYSTALS; GROWTH; NUCLEATION; MECHANISM; NANORODS; SPHERES; ROUTE;
D O I
10.1002/pssa.201026124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cu2S nanowires and MnS/Cu2S junctions have been derived on the basis of gamma-MnS nanowires via cation-exchange reaction. Relationships between a selective cation exchange and the growth direction of the gamma-MnS nanowires are identified by means of transmission electron microscopy. In the case of gamma-MnS nanowires with [0001] growth direction, Cu+ exchange with an initial gamma-MnS nanowire results in a Cu2S nanowire. In contrast, for gamma-MnS nanowires with [1-100] growth direction, Cu+ exchange leads to a striped MnS/Cu2S junction. Mechanisms for this selective cation exchange are proposed. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [1] Selective transformation of Cu nanowires to Cu2S or CuS nanostructures and the roles of the Kirkendall effect and anion exchange reaction
    Lee, Young-In
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 180 : 104 - 113
  • [2] Gas-phase substitution synthesis of Cu1.8S and Cu2S superlattice nanowires from CdS nanowires
    Kim, Han Sung
    Sung, Tae Kwang
    Jang, So Young
    Myung, Yoon
    Cho, Yong Jae
    Lee, Chi-Woo
    Park, Jeunghee
    Ahn, Jae-Pyoung
    Kim, Jin-Gyu
    Kim, Youn-joong
    CRYSTENGCOMM, 2011, 13 (06): : 2091 - 2095
  • [3] Multilevel resistance switching of individual Cu2S nanowires with inert electrodes
    Liu, Pei-Hsuan
    Lin, Ching-Chun
    Manekkathodi, Afsal
    Chen, Lih-Juann
    NANO ENERGY, 2015, 15 : 362 - 368
  • [4] Controllable hydrothermal synthesis of Cu2S nanowires on the copper substrate
    Yu, Xuelian
    An, Xiaoqiang
    MATERIALS LETTERS, 2010, 64 (03) : 252 - 254
  • [5] Development of Crystalline Cu2S Nanowires via a Direct Synthesis Process and Its Potential Applications
    Chen, Chih-Yen
    Jiang, Jian-Ru
    Chuang, Wen-Shuo
    Liu, Ming-Song
    Lee, Sheng-Wei
    NANOMATERIALS, 2020, 10 (02)
  • [6] Preparation and Characterization of Cu2S Nanoparticles Via Ultrasonic Method
    Mousavi-Kamazani, Mehdi
    Salavati-Niasari, Masoud
    Ramezani, Majid
    JOURNAL OF CLUSTER SCIENCE, 2013, 24 (03) : 927 - 934
  • [7] From Binary Cu2S to Ternary Cu-In-S and Quaternary Cu-In-Zn-S Nanocrystals with Tunable Composition via Partial Cation Exchange
    Akkerman, Quinten A.
    Genovese, Alessandro
    George, Chandramohan
    Prato, Mirko
    Moreels, Iwan
    Casu, Alberto
    Marras, Sergio
    Curcio, Alberto
    Scarpellini, Alice
    Pellegrino, Teresa
    Manna, Liberato
    Lesnyak, Vladimir
    ACS NANO, 2015, 9 (01) : 521 - 531
  • [8] Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting
    Li, Zhenzhen
    Zhang, Zhonghai
    NANO RESEARCH, 2018, 11 (03) : 1530 - 1540
  • [9] Well-coordinated bimetal sulfide MnS/Cu2S/C composite for high performance supercapacitors
    Liu, Xianxi
    Ye, Meng
    Hou, Hongying
    Sun, Zhaowei
    Yu, Xiaohua
    Rong, Ju
    Xiong, Shizhao
    JOURNAL OF ENERGY STORAGE, 2025, 106
  • [10] Preparation of Cu(OH)2/Cu2S arrays for enhanced hydrogen evolution reaction
    Xu, Xiangchao
    Qiao, Fen
    Liu, Yanzhen
    Liu, Wenjie
    BATTERY ENERGY, 2024, 3 (03):