Parametric simultons in one-dimensional nonlinear lattices

被引:0
|
作者
Huang, GX [1 ]
机构
[1] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China
[2] E China Normal Univ, State Key Lab Opt & Magnet Resonance Spect, Shanghai 200062, Peoples R China
来源
CHINESE PHYSICS | 2001年 / 10卷 / 06期
关键词
nonlinear lattice waves; solitons; simultons;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parametric simultaneous solitary wave (simulton) excitations are shown to be possible in nonlinear lattices. Taking a one-dimensional diatomic lattice with a cubic potential as an example, we consider the nonlinear coupling between the upper cut-off mode of acoustic branch(as a fundamental wave) and the upper cut-off mode of optical branch(as a second harmonic wave). Based on a quasi-discreteness approach the Karamzin-Sukhorukov equations for two slowly varying amplitudes of the fundamental and the second harmonic waves in the lattice are derived when the condition of second harmonic generation is satisfied. The lattice simulton solutions are given explicitly and the results show that these lattice simultons can be nonpropagating when the wave vectors of the fundamental wave and the second harmonic waves are exactly at pi/alpha (where a is the lattice constant) and zero, respectively.
引用
收藏
页码:523 / 530
页数:8
相关论文
共 50 条
  • [11] Solitons in one-dimensional nonlinear Schrodinger lattices with a local inhomogeneity
    Palmero, F.
    Carretero-Gonzalez, R.
    Cuevas, J.
    Kevrekidis, P. G.
    Krolikowski, W.
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [12] The resonance interaction of vibrational modes in one-dimensional nonlinear lattices
    T. Yu. Astakhova
    V. N. Likhachev
    N. S. Erikhman
    G. A. Vinogradov
    Russian Journal of Physical Chemistry B, 2009, 3 : 685 - 698
  • [13] Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices
    Senyange, B.
    Manda, B. Many
    Skokos, Ch
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [14] ONE-DIMENSIONAL NONLINEAR LATTICES WITH EXACTLY SOLVABLE STEADY MOTION
    TANAKA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1977, 43 (02) : 684 - 691
  • [15] The resonance interaction of vibrational modes in one-dimensional nonlinear lattices
    Astakhova, T. Yu.
    Likhachev, V. N.
    Erikhman, N. S.
    Vinogradov, G. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 3 (05) : 685 - 698
  • [16] One-dimensional Kondo lattices
    Shibata, N
    DENSITY-MATRIX RENORMALIZATION: A NEW NUMERICAL METHOD IN PHYSICS, 1999, 528 : 303 - 310
  • [17] Suppressing the critical collapse of solitons by one-dimensional quintic nonlinear lattices
    Zeng, Jianhua
    Malomed, Boris A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 127 : 287 - 296
  • [18] Discrete embedded solitary waves and breathers in one-dimensional nonlinear lattices
    Palmero, Faustino
    Molina, Mario, I
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    PHYSICS LETTERS A, 2022, 425
  • [19] Dispersion and absorption in one-dimensional nonlinear lattices: A resonance phonon approach
    Xu, Lubo
    Wang, Lei
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [20] Nonlinear interaction effect on the phase distribution in one-dimensional disordered lattices
    Zekri, N
    Bahlouli, H
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (32) : 6197 - 6206