Parametric simultons in one-dimensional nonlinear lattices

被引:0
|
作者
Huang, GX [1 ]
机构
[1] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China
[2] E China Normal Univ, State Key Lab Opt & Magnet Resonance Spect, Shanghai 200062, Peoples R China
来源
CHINESE PHYSICS | 2001年 / 10卷 / 06期
关键词
nonlinear lattice waves; solitons; simultons;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parametric simultaneous solitary wave (simulton) excitations are shown to be possible in nonlinear lattices. Taking a one-dimensional diatomic lattice with a cubic potential as an example, we consider the nonlinear coupling between the upper cut-off mode of acoustic branch(as a fundamental wave) and the upper cut-off mode of optical branch(as a second harmonic wave). Based on a quasi-discreteness approach the Karamzin-Sukhorukov equations for two slowly varying amplitudes of the fundamental and the second harmonic waves in the lattice are derived when the condition of second harmonic generation is satisfied. The lattice simulton solutions are given explicitly and the results show that these lattice simultons can be nonpropagating when the wave vectors of the fundamental wave and the second harmonic waves are exactly at pi/alpha (where a is the lattice constant) and zero, respectively.
引用
收藏
页码:523 / 530
页数:8
相关论文
共 50 条
  • [1] Three-wave parametric simultons in nonlinear lattices
    Huang, GX
    Hu, BB
    Szeftel, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4215 - 4221
  • [2] Thermodynamics of one-dimensional nonlinear lattices
    Likhachev, V. N.
    Astakhova, T. Yu.
    Vinogradov, G. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 3 (04) : 517 - 528
  • [3] Thermodynamics of one-dimensional nonlinear lattices
    V. N. Likhachev
    T. Yu. Astakhova
    G. A. Vinogradov
    Russian Journal of Physical Chemistry B, 2009, 3 : 517 - 528
  • [4] Energy relaxation in nonlinear one-dimensional lattices
    Reigada, R.
    Sarmiento, A.
    Lindenberg, Katja
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (6 II): : 1 - 066608
  • [5] Energy relaxation in nonlinear one-dimensional lattices
    Reigada, R
    Sarmiento, A
    Lindenberg, K
    PHYSICAL REVIEW E, 2001, 64 (06):
  • [6] GEOMETRICALLY INDUCED NONLINEAR DYNAMICS IN ONE-DIMENSIONAL LATTICES
    Hamilton, M.
    Bonfim, O. F. De Alcantara
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (08): : 2471 - 2476
  • [7] Existence and stability of localized modes in one-dimensional nonlinear lattices
    Yoshimura, Kazuyuki
    NONLINEAR ACOUSTICS: STATE-OF-THE-ART AND PERSPECTIVES (ISNA 19), 2012, 1474 : 60 - 63
  • [8] Stretch diffusion and heat conduction in one-dimensional nonlinear lattices
    Gao, Zhibin
    Li, Nianbei
    Li, Baowen
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [9] Nonlinear edge modes from topological one-dimensional lattices
    Jezequel, Lucien
    Delplace, Pierre
    PHYSICAL REVIEW B, 2022, 105 (03)
  • [10] Oscillatory instabilities of standing waves in one-dimensional nonlinear lattices
    Morgante, AM
    Johansson, M
    Kopidakis, G
    Aubry, S
    PHYSICAL REVIEW LETTERS, 2000, 85 (03) : 550 - 553