RedDB, a computational database of electroactive molecules for aqueous redox flow batteries

被引:25
作者
Sorkun, Elif [1 ]
Zhang, Qi [1 ]
Khetan, Abhishek [1 ]
Sorkun, Murat Cihan [1 ]
Er, Suleyman [1 ]
机构
[1] DIFFER Dutch Inst Fundamental Energy Res, Zaale 20, NL-5612 AJ Eindhoven, Netherlands
基金
荷兰研究理事会;
关键词
D O I
10.1038/s41597-022-01832-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An increasing number of electroactive compounds have recently been explored for their use in high-performance redox flow batteries for grid-scale energy storage. Given the vast and highly diverse chemical space of the candidate compounds, it is alluring to access their physicochemical properties in a speedy way. High-throughput virtual screening approaches, which use powerful combinatorial techniques for systematic enumerations of large virtual chemical libraries and respective property evaluations, are indispensable tools for an agile exploration of the designated chemical space. Herein, RedDB: a computational database that contains 31,618 molecules from two prominent classes of organic electroactive compounds, quinones and aza-aromatics, has been presented. RedDB incorporates miscellaneous physicochemical property information of the compounds that can potentially be employed as battery performance descriptors. RedDB's development steps, including: (i) chemical library generation, (ii) molecular property prediction based on quantum chemical calculations, (iii) aqueous solubility prediction using machine learning, and (iv) data processing and database creation, have been described.
引用
收藏
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 2019, Schrodinger Release 2019-3: Desmond Molecular Dynamics System
[2]   Towards eco-friendly redox flow batteries with all bio-sourced cell components [J].
Bamgbopa, Musbaudeen O. ;
Fetyan, Abdulmonem ;
Vagin, Mikhail ;
Adelodun, Adedeji A. .
JOURNAL OF ENERGY STORAGE, 2022, 50
[3]   Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences [J].
Bochevarov, Art D. ;
Harder, Edward ;
Hughes, Thomas F. ;
Greenwood, Jeremy R. ;
Braden, Dale A. ;
Philipp, Dean M. ;
Rinaldo, David ;
Halls, Mathew D. ;
Zhang, Jing ;
Friesner, Richard A. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (18) :2110-2142
[4]   Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening [J].
Cheng, Lei ;
Assary, Rajeev S. ;
Qu, Xiaohui ;
Jain, Anubhav ;
Ong, Shyue Ping ;
Rajput, Nay Nidhi ;
Persson, Kristin ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (02) :283-291
[5]   Molecular engineering of organic electroactive materials for redox flow batteries [J].
Ding, Yu ;
Zhang, Changkun ;
Zhang, Leyuan ;
Zhou, Yangen ;
Yu, Guihua .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (01) :69-103
[6]   Computational design of molecules for an all-quinone redox flow battery [J].
Er, Suleyman ;
Suh, Changwon ;
Marshak, Michael P. ;
Aspuru-Guzik, Alan .
CHEMICAL SCIENCE, 2015, 6 (02) :885-893
[7]  
HAY PJ, 1985, J CHEM PHYS, V82, P299, DOI [10.1063/1.448799, 10.1063/1.448800]
[8]   Tailoring Dihydroxyphthalazines to Enable Their Stable and Efficient Use in the Catholyte of Aqueous Redox Flow Batteries [J].
Hofmann, Jonas D. ;
Schmalisch, Sebastian ;
Schwan, Sebastian ;
Hong, Longcheng ;
Wegner, Hermann A. ;
Mollenhauer, Doreen ;
Janek, Juergen ;
Schroeder, Daniel .
CHEMISTRY OF MATERIALS, 2020, 32 (08) :3427-3438
[9]   Which Parameter is Governing for Aqueous Redox Flow Batteries with Organic Active Material? [J].
Hofmann, Jonas D. ;
Schroeder, Daniel .
CHEMIE INGENIEUR TECHNIK, 2019, 91 (06) :786-794
[10]   Quest for Organic Active Materials for Redox Flow Batteries: 2,3-Diaza-anthraquinones and Their Electrochemical Properties [J].
Hofmann, Jonas D. ;
Pfanschilling, Felix L. ;
Krawczyk, Nastaran ;
Geigle, Peter ;
Hong, Longcheng ;
Schmalisch, Sebastian ;
Wegner, Hermann A. ;
Mollenhauer, Doreen ;
Janek, Juegen ;
Schroeder, Daniel .
CHEMISTRY OF MATERIALS, 2018, 30 (03) :762-774