Electrostatic modification of oxide semiconductors by electric double layers of microporous SiO2-based solid electrolyte

被引:11
作者
Jiang, Jie [1 ,2 ]
Dai, Minzhi [2 ]
Sun, Jia [1 ]
Zhou, Bin [1 ]
Lu, Aixia [1 ]
Wan, Qing [1 ,2 ]
机构
[1] Hunan Univ, Key Lab Micronano Optoelect Devices, Minist Educ, Changsha 410082, Hunan, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
基金
中国科学院院长基金特别; 中国国家自然科学基金;
关键词
THIN-FILM TRANSISTORS; FIELD-EFFECT TRANSISTORS; GEL GATE DIELECTRICS; CARRIER DENSITY; LOW-VOLTAGE; CAPACITANCE; INSULATOR;
D O I
10.1063/1.3553869
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have studied electrostatic modulation of InGaZnO4 and indium-tin oxide (ITO) channel by using microporous SiO2-based solid electrolyte as gate dielectrics in the field-effect transistors (FETs) structure. H3PO4-treated SiO2-based solid electrolyte was found to be have a large capacitance (9.5 mu F/cm(2)) due to the strong capacitive coupling by electric double layer(EDL) between H3PO4-treated solid electrolyte and active channel. High carrier densities (>10(14)/cm(2)) and large metallic conductivities (2180 S/cm) in InGaZnO4 channel were electrostatically induced, while a metal-to-insulator transition (more than 6 orders of magnitude of channel resistance modulation) was observed in ITO channel by using such FET structure. Furthermore, device simulation based on an EDL model can also reproduce the transfer characteristics well. Our result provides a new opportunity for electrostatic modulation of the electronic properties in condensed matter. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553869]
引用
收藏
页数:6
相关论文
共 29 条
[1]   Electrostatic modification of novel materials [J].
Ahn, C. H. ;
Bhattacharya, A. ;
Di Ventra, M. ;
Eckstein, J. N. ;
Frisbie, C. Daniel ;
Gershenson, M. E. ;
Goldman, A. M. ;
Inoue, I. H. ;
Mannhart, J. ;
Millis, Andrew J. ;
Morpurgo, Alberto F. ;
Natelson, Douglas ;
Triscone, Jean-Marc .
REVIEWS OF MODERN PHYSICS, 2006, 78 (04) :1185-1212
[2]   Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic [J].
Cho, Jeong Ho ;
Lee, Jiyoul ;
Xia, Yu ;
Kim, Bongsoo ;
He, Yiyong ;
Renn, Michael J. ;
Lodge, Timothy P. ;
Frisbie, C. Daniel .
NATURE MATERIALS, 2008, 7 (11) :900-906
[3]   High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors [J].
Cho, Jeong Ho ;
Lee, Jiyoul ;
He, Yiyong ;
Kim, BongSoo ;
Lodge, Timothy P. ;
Frisbie, C. Daniel .
ADVANCED MATERIALS, 2008, 20 (04) :686-+
[4]   Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors [J].
Dhoot, Anoop S. ;
Yuen, Jonathan D. ;
Heeney, Martin ;
McCulloch, Iain ;
Moses, Daniel ;
Heeger, Alan J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (32) :11834-11837
[5]   Large Electric Field Effect in Electrolyte-Gated Manganites [J].
Dhoot, Anoop Singh ;
Israel, Casey ;
Moya, Xavier ;
Mathur, Neil D. ;
Friend, Richard Henry .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[6]   Two-dimensional numerical simulation of radio frequency sputter amorphous In-Ga-Zn-O thin-film transistors [J].
Fung, Tze-Ching ;
Chuang, Chiao-Shun ;
Chen, Charlene ;
Abe, Katsumi ;
Cottle, Robert ;
Townsend, Mark ;
Kumomi, Hideya ;
Kanicki, Jerzy .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (08)
[7]   Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states [J].
Hsieh, Hsing-Hung ;
Kamiya, Toshio ;
Nomura, Kenji ;
Hosono, Hideo ;
Wu, Chung-Chih .
APPLIED PHYSICS LETTERS, 2008, 92 (13)
[8]   Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature [J].
Jiang, Jie ;
Wan, Qing ;
Sun, Jia ;
Lu, Aixia .
APPLIED PHYSICS LETTERS, 2009, 95 (15)
[9]  
KAMEL FE, 2010, J ELECTROCHEM SOC, V157, pG91
[10]   Density-of-States Modeling of Solution-Processed InGaZnO Thin-Film Transistors [J].
Kim, Chang Eun ;
Cho, Edward Namkyu ;
Moon, Pyung ;
Kim, Gun Hee ;
Kim, Dong Lim ;
Kim, Hyun Jae ;
Yun, Ilgu .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (10) :1131-1133