A trace theorem for the Dirichlet form on the Sierpinski gasket

被引:21
作者
Jonsson, A [1 ]
机构
[1] Umea Univ, Dept Math, S-90187 Umea, Sweden
关键词
D O I
10.1007/s00209-005-0767-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In connection with the theory for Brownian motion on fractals, a corresponding Dirichlet form has been defined. We consider here the fractal known as the Sierpinski gasket, and characterize the trace of the domain of the Dirichlet form to the boundary of the gasket, boundary in this context meaning the triangle which confines the gasket.
引用
收藏
页码:599 / 609
页数:11
相关论文
共 9 条
[1]  
Barlow M., 1998, LECT NOTES MATH, V1690, P1
[2]   Brownian motion on fractals and function spaces [J].
Jonsson, A .
MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (03) :495-504
[3]   Dirichlet forms and Brownian motion penetrating fractals [J].
Jonsson, A .
POTENTIAL ANALYSIS, 2000, 13 (01) :69-80
[4]  
Jonsson A., 1984, MATH REP, V2, P1
[5]  
KAMONT A., 1997, APPROX THEORY APPL, V13, P63
[6]  
Kigami J., 2001, ANAL FRACTALS
[7]   Brownian motion penetrating fractals - An application of the trace theorem of Besov spaces [J].
Kumagai, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 170 (01) :69-92
[8]  
KUSUOKA S, 1993, LECT NOTES MATH, V1567
[9]  
Strichartz R.S., 1999, Notices of the American Mathematical Society, V46, P1199