The classification problem for S-local torsion-free abelian groups of finite rank

被引:3
作者
Thomas, Simon [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Borel equivalence relation; Superrigidity; Torsion-free abelian group; BOREL EQUIVALENCE-RELATIONS;
D O I
10.1016/j.aim.2010.10.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that n >= 2 and that S, T are sets of primes. Then the classification problem for the S-local torsion-free abelian groups of rank n is Borel reducible to the classification problem for the T-local torsion-free abelian groups of rank n if and only if S subset of T. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3699 / 3723
页数:25
相关论文
共 33 条
[1]   Linear algebraic groups and countable Borel equivalence relations [J].
Adams, S ;
Kechris, AS .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :909-943
[2]  
[Anonymous], 1970, PURE APPL MATH, V36
[3]  
[Anonymous], 1994, Prog. in Math, DOI DOI 10.1007/978-3-0346-0332-4
[4]  
Arnold D., 2000, Abelian Groups and Representations of Finite Partially Ordered Sets
[5]  
Artin E., 1957, Geometric algebra, DOI 10.1002/9781118164518
[6]  
BAER R., 1937, Duke Math. J., V3, P68, DOI [10.1215/S0012-7094-37-00308-9, DOI 10.1215/S0012-7094-37-00308-9]
[7]  
Bass H., 1964, Bull. Amer. Math. Soc, V70, P385
[8]  
Borel A., 1991, LINEAR ALGEBRAIC GRO, V126, DOI DOI 10.1007/978-1-4612-0941-6
[9]  
Coskey S., T AM MATH S IN PRESS
[10]   Borel reductions of profinite actions of SLn (Z) [J].
Coskey, Samuel .
ANNALS OF PURE AND APPLIED LOGIC, 2010, 161 (10) :1270-1279