Symmetry and scaling properties of the von Karman equations

被引:4
作者
Chien, CS [1 ]
Kuo, YJ
Mei, Z
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
[2] Univ Marburg, Dept Math, D-35032 Marburg, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1998年 / 49卷 / 05期
关键词
von Karman equations; bifurcations; symmetries; scaling laws; central difference approximations;
D O I
10.1007/PL00001487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study symmetries in the von Karman equations with simply supported boundary conditions on rectangular domains. By embedding this fourth order plate problem into a space of periodic functions, we obtain hidden symmetries and scaling properties in its solution manifold. These properties are exploited ibr efficient numerical approximation of the solution branches at the bifurcation points, and are demonstrated with numerical examples.
引用
收藏
页码:710 / 729
页数:20
相关论文
共 20 条
[1]   BRANCH SWITCHING AT A CORANK-4 BIFURCATION POINT OF SEMILINEAR ELLIPTIC PROBLEMS WITH SYMMETRY [J].
ALLGOWER, E ;
BOHMER, K ;
ZHEN, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1994, 14 (02) :161-182
[2]  
ALLGOWER E, 1991, NOTE NUM FL, V31, P1
[3]  
Allgower E., 1990, NUMERICAL CONTINUATI
[4]  
Antman S. S., 1995, NONLINEAR PROBLEMS E
[7]  
CHIEN CS, 1997, IN PRESS SIAM J SCI, V18
[8]  
CHIEN CS, IN PRESS SIAM J SCI
[9]  
CHIEN CS, 872115M005005 NSC
[10]  
CIARLET PG, 1980, ARCH RATION MECH AN, V73, P349, DOI 10.1007/BF00247674