ACYCLIC EDGE-COLORING OF PLANAR GRAPHS

被引:34
作者
Basavaraju, Manu [1 ]
Chandran, L. Sunil [1 ]
Cohen, Nathann [2 ,3 ]
Havet, Frederic [2 ,3 ]
Mueller, Tobias [4 ]
机构
[1] Indian Inst Sci, Comp Sci & Automat Dept, Bangalore 560012, Karnataka, India
[2] UNSA, CNRS, I3S, Projet Mascotte, F-06902 Sophia Antipolis, France
[3] INRIA, F-06902 Sophia Antipolis, France
[4] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math, IL-69978 Tel Aviv, Israel
关键词
edge-coloring; planar graphs; bounded density graphs; CHROMATIC NUMBER;
D O I
10.1137/090776676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper edge-coloring with the property that every cycle contains edges of at least three distinct colors is called an acyclic edge-coloring. The acyclic chromatic index of a graph G, denoted. chi'(alpha)(G), is the minimum k such that G admits an acyclic edge-coloring with k colors. We conjecture that if G is planar and Delta(G) is large enough, then chi'(alpha) (G) = Delta (G). We settle this conjecture for planar graphs with girth at least 5. We also show that chi'(alpha) (G) <= Delta (G) + 12 for all planar G, which improves a previous result by Fiedorowicz, Haluszczak, and Narayan [Inform. Process. Lett., 108 (2008), pp. 412-417].
引用
收藏
页码:463 / 478
页数:16
相关论文
共 20 条
[1]   Acyclic edge colorings of graphs [J].
Alon, N ;
Sudakov, B ;
Zaks, A .
JOURNAL OF GRAPH THEORY, 2001, 37 (03) :157-167
[2]   ACYCLIC COLORING OF GRAPHS [J].
ALON, N ;
MCDIARMID, C ;
REED, B .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) :277-288
[3]   Acyclic edge coloring of 2-degenerate graphs [J].
Basavaraju, Manu ;
Chandran, L. Sunil .
JOURNAL OF GRAPH THEORY, 2012, 69 (01) :1-27
[4]   d-Regular Graphs of Acyclic Chromatic Index at Least d+2 [J].
Basavaraju, Manu ;
Chandran, L. Sunil ;
Kummini, Manoj .
JOURNAL OF GRAPH THEORY, 2010, 63 (03) :226-230
[5]   Acyclic Edge Coloring of Graphs with Maximum Degree 4 [J].
Basavaraju, Manu ;
Chandran, L. Sunill .
JOURNAL OF GRAPH THEORY, 2009, 61 (03) :192-209
[6]   Acyclic edge colouring of planar graphs without short cycles [J].
Borowiecki, Mieczyslaw ;
Fiedorowicz, Anna .
DISCRETE MATHEMATICS, 2010, 310 (09) :1445-1455
[7]  
Burnstein M.I., 1979, SOOBSC AKAD NAUK GRU, V93, P21
[8]   About acyclic edge colourings of planar graphs [J].
Fiedorowicz, Anna ;
Haluszczak, Mariusz ;
Narayanan, Narayanan .
INFORMATION PROCESSING LETTERS, 2008, 108 (06) :412-417
[9]  
FLAMCIK J, 1978, MATH SLOVACA, V28, P139
[10]  
FLAMCIK J, 1980, ARCH MATH BRNO, V16, P81