Pharmaceutical and Macromolecular Technologies in the Spirit of Industry 4.0

被引:10
作者
Marosi, Gyorgy [1 ]
Hirsch, Edit [1 ]
Bocz, Katalin [1 ]
Toldy, Andrea [2 ]
Szolnoki, Beata [1 ]
Bodzay, Brigitta [1 ]
Csontos, Istvan [1 ]
Farkas, Attila [1 ]
Balogh, Attila [1 ]
Demuth, Balazs [1 ]
Nagy, Zsombor K. [1 ]
Pataki, Hajnalka [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Organ Chem & Technol, FlowBiotech Ctr, FirePharma Grp,FIEK PharmaTech Lab, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Polymer Engn, Muegyet Rkp 3, H-1111 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
interface modification; recycling; biocomposites; pharmaceutical crystallization; Raman control; SELF-EXTINGUISHING POLYPROPYLENE; DRUG-DELIVERY SYSTEM; RAMAN-SPECTROSCOPY; FEEDBACK-CONTROL; POLYOLEFIN SYSTEMS; MICRO-SPECTROSCOPY; FLAME RETARDANCY; FIRE RETARDANCY; MASS FRACTION; DOSAGE FORMS;
D O I
10.3311/PPch.12870
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Well designed (multilayer, adaptive, reactive) interphases, being a key element of multicomponent structures, could be tailored to different requirements through controlled technologies. This is the link connecting various green, safe, healthy materials and innovative pharmaceuticals. Upgraded recycling could be performed by interfacial consolidation of self-reinforced composites, the flame retardancy of which is feasible with surprisingly low amount of flame retardant. Examples are shown how the reinforced and foamed forms of thermosetting and thermoplastic biopolymers can play a significant role (after flame retardant modification) in the development of airplanes and electric cars. Biopolymer nanofibres, such as polycaprolactone and polyhydroxybutyrate, could be formed with increased productivity for various medical uses. Raman-based control of the units of integrated continuous technologies has been elaborated including controlled formation of crystals with polymer interlayer for direct tableting.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 57 条
[51]   Scaled-up preparation of drug-loaded electrospun polymer fibres and investigation of their continuous processing to tablet form [J].
Szabo, E. ;
Demuth, B. ;
Nagy, B. ;
Molnar, K. ;
Farkas, A. ;
Szabo, B. ;
Balogh, A. ;
Hirsch, E. ;
Nagy, B. ;
Marosi, G. ;
Nagy, Z. K. .
EXPRESS POLYMER LETTERS, 2018, 12 (05) :436-451
[52]  
Szép A, 2005, EUR J PHARM SCI, V25, pS194
[53]   Quantitative analysis of mixtures of drug delivery system components by Raman microscopy [J].
Szép, A ;
Marosi, G ;
Marosföi, B ;
Anna, P ;
Mohammed-Ziegler, I ;
Virágh, M .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2003, 14 (11-12) :784-789
[54]   Flame retardancy of glucofuranoside based bioepoxy and carbon fibre reinforced composites made thereof [J].
Toldy, A. ;
Niedermann, P. ;
Rapi, Zs. ;
Szolnoki, B. .
POLYMER DEGRADATION AND STABILITY, 2017, 142 :62-68
[55]   Nanofiltration: a Final Step in Industrial Process Water Treatment [J].
Torma, Csilla Zsofia ;
Csefalvay, Edit .
PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 2018, 62 (01) :68-75
[56]   Characterization of melt extruded and conventional Isoptin formulations using Raman chemical imaging and chemometrics [J].
Vajna, Balazs ;
Pataki, Hajnalka ;
Nagy, Zsombor ;
Farkas, Istvan ;
Marosi, Gyoergy .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2011, 419 (1-2) :107-113
[57]   Effect of supercritical CO2 plasticization on the degradation and residual crystallinity of melt-extruded spironolactone [J].
Vigh, Tamas ;
Sauceau, Martial ;
Fages, Jacques ;
Rodier, Elisabeth ;
Wagner, Istvan ;
Soti, Peter L. ;
Marosi, Gyoergy ;
Nagy, Zsombor K. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2014, 25 (10) :1135-1144