Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: A density functional theory study

被引:24
作者
Li, Yin-Chuan [1 ]
Chen, Hong-Wei [2 ]
Wei, Hai-Zhen [1 ]
Jiang, Shao-Yong [3 ]
Palmer, Martin R. [4 ]
van de Ven, T. G. M. [5 ]
Hohl, Simon [1 ]
Lu, Jian-Jun [1 ]
Ma, Jing [2 ]
机构
[1] Nanjing Univ, Dept Earth Sci & Engn, State Key Lab Mineral Deposits Res, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210023, Peoples R China
[3] China Univ Geosci, Fac Earth Resources, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[4] Univ Southampton, Sch Ocean & Earth Sci, NOC, European Way, Southampton SO14 3ZH, Hants, England
[5] McGill Univ, Dept Chem, Montreal, PQ H3A 2A7, Canada
基金
中国国家自然科学基金;
关键词
Boron isotope fractionation; Reduced partition function ratio (RPFR); Tourmaline group minerals; Fluid; OROGENIC GOLD DEPOSITS; ZN-AG DEPOSIT; AB-INITIO; AQUEOUS FLUIDS; 1ST-PRINCIPLES CALCULATIONS; HIGH P; INSIGHTS; SILICON; GEOCHEMISTRY; PREDICTION;
D O I
10.1016/j.chemgeo.2020.119466
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The equilibrium boron isotope fractionations (alpha(3-4), Delta B-11((Tur-fluid))) between tourmaline mineral groups and fluids at 0.5 GPa, 600-1000 K are investigated using density functional theory calculations. The first solvent shell controls boron isotope fractionation in solution, where the beta values of both H3BO3 and B(OH)(4)(-) decrease with increasing numbers of hydrogen bonds. In supercritical fluids, the weakening of hydrogen bonds and the diversity in configurations of hydrated boron species both contribute to variations in the vibrational frequencies. The 1000ln alpha(Tur-fluid) value increases with increasing Mg/(Fe + Mg) ratios in the dravite-schorl solid solution series. This effect, together with the crystallization sequence predicted from the Gibbs free energies of tourmaline formation, accounts well for the association of boron isotope and chemical zonation observed in zoned tourmaline grains. The dependence of boron isotope fractionation on the B-O bond length in tourmaline group minerals reflects the changes in relevant molar volumes caused by differences in the mass and charge of the atoms occupying the X, Y, and Z sites of tourmalines. This study suggests that the chemical composition of the tourmaline plays an important role in controlling the boron isotope composition in tourmalines crystallized from hydrothermal systems.
引用
收藏
页数:14
相关论文
共 100 条
  • [11] Crystal chemistry of the elbaite-schorl series
    Bosi, F
    Andreozzi, GB
    Federico, M
    Graziani, G
    Lucchesi, S
    [J]. AMERICAN MINERALOGIST, 2005, 90 (11-12) : 1784 - 1792
  • [12] SECULAR BORON ISOTOPE VARIATIONS IN THE CONTINENTAL-CRUST - AN ION MICROPROBE STUDY
    CHAUSSIDON, M
    ALBAREDE, F
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 1992, 108 (04) : 229 - 241
  • [13] Atomic weights of the elements 1999
    Coplen, TB
    [J]. JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2001, 30 (03) : 701 - 712
  • [14] Fractionation of silicon isotopes in liquids: The importance of configurational disorder
    Dupuis, Romain
    Benoit, Magali
    Nardin, Elise
    Meheut, Merlin
    [J]. CHEMICAL GEOLOGY, 2015, 396 : 239 - 254
  • [15] THE PREDICTION OF BORATE MINERAL EQUILIBRIA IN NATURAL-WATERS - APPLICATION TO SEARLES LAKE, CALIFORNIA
    FELMY, AR
    WEARE, JH
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 1986, 50 (12) : 2771 - 2783
  • [16] FORTIER S, 1975, CANADIAN MINERALOGIS, V0013
  • [17] Frisch M. J., 2010, GAUSSIAN 09 REVISION
  • [18] Theoretical calculation of equilibrium Mg isotope fractionations between minerals and aqueous solutions
    Gao, Caihong
    Cao, Xiaobin
    Liu, Qi
    Yang, Yuhong
    Zhang, Siting
    He, Yuyang
    Tang, Mao
    Liu, Yun
    [J]. CHEMICAL GEOLOGY, 2018, 488 : 62 - 75
  • [19] GIBBS GV, 1982, AM MINERAL, V67, P421
  • [20] Semiempirical GGA-type density functional constructed with a long-range dispersion correction
    Grimme, Stefan
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) : 1787 - 1799