共 50 条
Phosphonates Meet Metal-Organic Frameworks: Towards CO2 Adsorption
被引:6
|作者:
da Silva, Cleiser Thiago P.
[1
,2
]
Howarth, Ashlee J.
[1
,3
]
Rimoldi, Martino
[1
]
Islamoglu, Timur
[1
]
Rinaldi, Andrelson W.
[2
]
Hupp, Joseph T.
[1
]
机构:
[1] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Univ Estadual Maringa, Lab Mat Chem & Sensors, Av Colombo 5790, BR-87020900 Maringa, PR, Brazil
[3] Concordia Univ, Dept Chem & Biochem, 7141 Sherbrooke St W, Montreal, PQ H4B 1R6, Canada
基金:
美国国家科学基金会;
关键词:
metal-organic frameworks;
porous phosphonates;
carbon dioxide capture;
zirconium-based MOFs;
CARBON-DIOXIDE CAPTURE;
CRYSTAL-STRUCTURE;
PROTON CONDUCTIVITY;
POROUS MATERIALS;
PORE-SIZE;
DESIGN;
MOFS;
STABILITY;
PH;
FUNCTIONALIZATION;
D O I:
10.1002/ijch.201800129
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Here we report a new highly microporous zirconium phosphonate material synthesized under solvothemal conditions. The specific Brunauer-Emmett-Teller (BET) surface area of the "unconventional metal-organic framework" (UMOF) is measured to be similar to 900 m(2)/g, after following an appropriate activation protocol. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows that the material bears a free -OH functionality on the phosphonate linker that may interact with CO2. CO2 adsorption isotherms were collected and a measured heat of adsorption of 31 kJ/mol was obtained. In addition, adsorption isotherms of CO2, N-2, and CH4 at 298 K combined with Ideal Adsorbed Solution Theory (IAST) show that the material can be expected to display high selectivities for uptake of CO2 versus N-2 or CH4.
引用
收藏
页码:1164 / 1170
页数:7
相关论文