A Tunable Ultra-Broadband Metamaterial Absorber with Multilayered Structure

被引:31
作者
Dao, Rina [1 ,2 ]
Kong, Xinru [1 ,2 ]
Zhang, Hai-Feng [1 ,2 ,3 ]
Tian, Xingliang [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Microelect, Nanjing 210023, Peoples R China
[3] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
关键词
Ultra-broadband absorber; Tunable THz absorber; Vanadium dioxide;
D O I
10.1007/s11468-019-01013-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, we demonstrate a tunable ultra-broadband metamaterial absorber (TUMA) in terahertz (THz) band which is based on the multilayered structure composed of an Au reflective layer, polyimide dielectric layers, and vanadium dioxide (VO2) periodic structures, respectively. We gain the tunable absorption spectra because of the room temperature phased-changed character of VO2. The relative bandwidth reaches to 81.2% and the absorption rate is over 90% at the frequency range of 1.63-3.86 THz when the temperature (t(1)) is 350 K, but when t(1) = 300 K, the presented absorber is acted as a reflector whose absorption is small besides the frequency points of 9.75 THz and 9.81 THz. For the sake of comprehending the physical mechanism in-depth, the electric field (E-field) diagrams, the surface current distributions and the power loss density (PLD) of the TUMA are investigated. The influences of structural arguments and incident angle (theta) on the absorption are also analyzed. The emulated consequences show that the absorption spectrum can be regulated by changing structural parameters and incident angle and the tunable absorption regions can be obtained by altering the external temperature.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 26 条
  • [1] Thin-film sensing with planar asymmetric metamaterial resonators
    Al-Naib, Ibraheem A. Ibraheem
    Jansen, Christian
    Koch, Martin
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (08)
  • [2] Super-resolution imaging using a three-dimensional metamaterials nanolens
    Casse, B. D. F.
    Lu, W. T.
    Huang, Y. J.
    Gultepe, E.
    Menon, L.
    Sridhar, S.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (02)
  • [3] Near-infrared broadband absorber with film-coupled multilayer nanorods
    Chen, Xingxing
    Gong, Hanmo
    Dai, Shuowei
    Zhao, Ding
    Yang, Yuanqing
    Li, Qiang
    Qiu, Min
    [J]. OPTICS LETTERS, 2013, 38 (13) : 2247 - 2249
  • [4] Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements
    Cheng, Yong Zhi
    Wang, Ying
    Nie, Yan
    Gong, Rong Zhou
    Xiong, Xuan
    Wang, Xian
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
  • [5] A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide
    Dao, Ri-na
    Kong, Xin-ru
    Zhang, Hai-feng
    Su, Xin-ran
    [J]. OPTIK, 2019, 180 : 619 - 625
  • [6] Ultra-broadband microwave metamaterial absorber
    Ding, Fei
    Cui, Yanxia
    Ge, Xiaochen
    Jin, Yi
    He, Sailing
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (10)
  • [7] Low frequency lumped element-based negative index metamaterial
    Erentok, Aycan
    Ziolkowski, Richard W.
    Nielsen, J. A.
    Greegor, R. B.
    Parazzoli, C. G.
    Tanielian, M. H.
    Cummer, Steven A.
    Popa, Bogdan-Ioan
    Hand, Thomas
    Vier, D. C.
    Schultz, S.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (18)
  • [8] Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials
    Feng, YB
    Qiu, T
    Shen, CY
    Li, XY
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (03) : 363 - 368
  • [9] Negative refraction, growing evanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials
    Grbic, A
    Eleftheriades, GV
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (12) : 2297 - 2305
  • [10] A broadband low-reflection metamaterial absorber
    Gu, S.
    Barrett, J. P.
    Hand, T. H.
    Popa, B. -I.
    Cummer, S. A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)