A Tunable Ultra-Broadband Metamaterial Absorber with Multilayered Structure

被引:31
|
作者
Dao, Rina [1 ,2 ]
Kong, Xinru [1 ,2 ]
Zhang, Hai-Feng [1 ,2 ,3 ]
Tian, Xingliang [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Microelect, Nanjing 210023, Peoples R China
[3] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
关键词
Ultra-broadband absorber; Tunable THz absorber; Vanadium dioxide;
D O I
10.1007/s11468-019-01013-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, we demonstrate a tunable ultra-broadband metamaterial absorber (TUMA) in terahertz (THz) band which is based on the multilayered structure composed of an Au reflective layer, polyimide dielectric layers, and vanadium dioxide (VO2) periodic structures, respectively. We gain the tunable absorption spectra because of the room temperature phased-changed character of VO2. The relative bandwidth reaches to 81.2% and the absorption rate is over 90% at the frequency range of 1.63-3.86 THz when the temperature (t(1)) is 350 K, but when t(1) = 300 K, the presented absorber is acted as a reflector whose absorption is small besides the frequency points of 9.75 THz and 9.81 THz. For the sake of comprehending the physical mechanism in-depth, the electric field (E-field) diagrams, the surface current distributions and the power loss density (PLD) of the TUMA are investigated. The influences of structural arguments and incident angle (theta) on the absorption are also analyzed. The emulated consequences show that the absorption spectrum can be regulated by changing structural parameters and incident angle and the tunable absorption regions can be obtained by altering the external temperature.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 50 条
  • [1] A Tunable Ultra-Broadband Metamaterial Absorber with Multilayered Structure
    Rina Dao
    Xinru Kong
    Hai-Feng Zhang
    Xingliang Tian
    Plasmonics, 2020, 15 : 169 - 175
  • [2] An ultra-broadband multilayered graphene absorber
    Amin, Muhammad
    Farhat, Mohamed
    Bagci, Hakan
    OPTICS EXPRESS, 2013, 21 (24): : 29938 - 29948
  • [3] Ultra-broadband nanowire metamaterial absorber
    Wang, Baoqing
    Ma, Cuiping
    Yu, Peng
    Govorov, Alexander O.
    Xu, Hongxing
    Wang, Wenhao
    Besteiro, Lucas V.
    Jing, Zhimin
    LI, Peihang
    Wang, Zhiming
    PHOTONICS RESEARCH, 2022, 10 (12) : 2718 - 2727
  • [4] Ultra-broadband nanowire metamaterial absorber
    BAOQING WANG
    CUIPING MA
    PENG YU
    ALEXANDER O.GOVOROV
    HONGXING XU
    WENHAO WANG
    LUCAS V.BESTEIRO
    ZHIMIN JING
    PEIHANG LI
    ZHIMING WANG
    Photonics Research, 2022, (12) : 2718 - 2727
  • [5] Ultra-broadband terahertz metamaterial absorber
    Zhu, Jianfei
    Ma, Zhaofeng
    Sun, Wujiong
    Ding, Fei
    He, Qiong
    Zhou, Lei
    Ma, Yungui
    APPLIED PHYSICS LETTERS, 2014, 105 (02)
  • [6] Ultra-broadband microwave metamaterial absorber
    Ding, Fei
    Cui, Yanxia
    Ge, Xiaochen
    Jin, Yi
    He, Sailing
    APPLIED PHYSICS LETTERS, 2012, 100 (10)
  • [7] A design of ultra-broadband metamaterial absorber
    Shi, Yan
    Li, Yuan Chang
    Hao, Tong
    Li, Long
    Liang, Chang-Hong
    WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (02) : 381 - 391
  • [8] A tunable polarization insensitive ultra-broadband absorber based on the plasma metamaterial
    Kong, Xin-Ru
    Zhang, Hai-Feng
    Dao, Ri-Na
    Liu, Guo-Biao
    OPTICS COMMUNICATIONS, 2019, 453
  • [9] Ultra-broadband metamaterial absorber based on the structure of resistive films
    Ling, Xinyan
    Xiao, Zhongyin
    Zheng, Xiaoxia
    Tang, Jingyao
    Xu, Kaikai
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (17) : 2325 - 2333
  • [10] Ultra-broadband absorber based on multilayered graphene
    Garakani, Farshid Gharib
    Moradi, Gholamreza
    Ghorbani, Ayaz
    OPTICS CONTINUUM, 2023, 2 (05): : 1158 - 1165