A novel kinematic-constraint-inspired non-ordinary state-based peridynamics

被引:13
|
作者
Tian, Da-Lang [1 ]
Zhou, Xiao-Ping [1 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinematic constraints; Bond-associated deformation gradient; Material stability; Unphysical deformation; Non-ordinary state-based peridynamics; NUMERICAL-SIMULATION; CORRESPONDENCE MODEL; CRACK-PROPAGATION; BOND; DEFORMATION; CONVERGENCE; COALESCENCE; ELASTICITY; INITIATION; STABILITY;
D O I
10.1016/j.apm.2022.05.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The non-ordinary state-based peridynamics (NOSBPD) is attractive because of its ability to incorporate available constitutive models. However, conventional NOSBPD suffers from numerical oscillation induced by zero-energy mode. Although the recently proposed bond associated deformation gradient performs well with controlling the issues, the size of the bond-associated horizon is undetermined. The work is aimed to introduce kinematic constraints to redefine the classical bond-associated deformation gradient. Based on the kinematic constraints imposed by the symmetry of the bond-associated deformation gradient and non-local kinematic measures, a well-defined bond-associated horizon is derived for 1D, 2D, and 3D structures. In this way, a novel kinematic-constraint-inspired non-ordinary state-based peridynamics (KC-NOSBPD) is proposed, which completely differs from the previous continuum-kinematics-inspired peridynamics (CPD) extended from classical bond-based peridynamics (BBPD). The linear and angular momentum conservation is firstly and rigorously proved. The novel proposed model is proved capable of avoiding unphysical deformation modes that typically beset conventional formulation through several analytical examples. In addition, bond-associated stress-state-based failure criteria are proposed for fracture analysis. Several benchmarking tests verify the effectiveness of the proposed formulation in eliminating spurious oscillation of numerical solution and highlight the significance of kinematic constraints. The final crack pattern of sandstone specimens coincides with experimental observation, illustrating its suitability for solving crack propagation. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:709 / 740
页数:32
相关论文
共 50 条
  • [21] Crack propagation simulation of fiber-reinforced composite laminates based on non-ordinary state-based peridynamics
    Zhou, Ji
    Qian, Songrong
    MATERIALS RESEARCH EXPRESS, 2025, 12 (04)
  • [22] A bond-augmented stabilized method for numerical oscillations in non-ordinary state-based peridynamics
    Hou, Yudong
    Zhang, Xiaobing
    ENGINEERING FRACTURE MECHANICS, 2024, 307
  • [23] A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials
    Lai, Xin
    Liu, Lisheng
    Li, Shaofan
    Zeleke, Migbar
    Liu, Qiwen
    Wang, Zhen
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2018, 111 : 130 - 146
  • [24] A low cycle fatigue cracking simulation method of non-ordinary state-based peridynamics
    Li, Hongxiang
    Hao, Zhiming
    Li, Pan
    Li, Xiaolong
    Zhang, Dingguo
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 156
  • [25] Numerical modelling of ductile fracture in steel plates with non-ordinary state-based peridynamics
    Hu, Yumeng
    Feng, Guoqing
    Li, Shaofan
    Sheng, Weijia
    Zhang, Chaoyi
    ENGINEERING FRACTURE MECHANICS, 2020, 225
  • [26] A stable non-ordinary state-based peridynamic model for laminated composite materials
    Fang, Guodong
    Liu, Shuo
    Liang, Jun
    Fu, Maoqing
    Wang, Bing
    Meng, Songhe
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (02) : 403 - 430
  • [27] Explosion damage analysis of concrete structure with bond-associated non-ordinary state-based peridynamics
    Yang, Siyang
    Gu, Xin
    Xia, Xiaozhou
    Zhang, Qing
    ENGINEERING WITH COMPUTERS, 2023, 39 (01) : 607 - 624
  • [28] Peridynamic beams: A non-ordinary, state-based model
    O'Grady, James
    Foster, John
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (18) : 3177 - 3183
  • [29] 3D analysis of anchor bolt pullout in concrete materials using the non-ordinary state-based peridynamics
    Lu, Jiezhi
    Zhang, Yaoting
    Muhammad, Habib
    Chen, Zhijun
    Xiao, Yunfeng
    Ye, Binbin
    ENGINEERING FRACTURE MECHANICS, 2019, 207 : 68 - 85
  • [30] Elastoplastic theory of finite deformation and its solution method for non-ordinary state-based peridynamics
    Li, Hongxiang
    Hao, Zhiming
    Li, Pan
    Li, Xiaolong
    Zhang, Dingguo
    MECCANICA, 2022, 57 (11) : 2809 - 2820