TURING PATTERNS AND WAVEFRONTS FOR REACTION-DIFFUSION SYSTEMS IN AN INFINITE CHANNEL

被引:5
作者
Chen, Chao-Nien [1 ]
Ei, Shin-Ichiro [2 ]
Lin, Ya-Ping [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
[2] Kyushu Univ, Fac Math, Nishi Ku, Fukuoka 8190395, Japan
关键词
Turing pattern; wavefront; reaction-diffusion system; FITZHUGH-NAGUMO EQUATIONS; DIRECTIONALITY;
D O I
10.1137/090747348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with reaction-diffusion systems on an infinitely long strip in R-2. Through a pitchfork bifurcation, spatially heterogeneous patterns exist in a neighborhood of Turing instability. Motivated by the works of Kondo and Asai, we study wavefront solution heteroclinic to Turing patterns. It will be seen that the dynamics of a wavefront can be approximated by a fourth order equation of buckling type.
引用
收藏
页码:2822 / 2843
页数:22
相关论文
共 37 条
[1]   Zebrafish Leopard gene as a component of the putative reaction-diffusion system [J].
Asai, R ;
Taguchi, E ;
Kume, Y ;
Saito, M ;
Kondo, S .
MECHANISMS OF DEVELOPMENT, 1999, 89 (1-2) :87-92
[2]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[3]   Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system [J].
Bode, M ;
Liehr, AW ;
Schenk, CP ;
Purwins, HG .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 161 (1-2) :45-66
[4]  
Carr J., 1981, Applications of centre manifold theory, V35
[5]   INSTABILITY RESULTS FOR REACTION DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY-CONDITIONS [J].
CASTEN, RG ;
HOLLAND, CJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 27 (02) :266-273
[6]   Stability criteria for reaction-diffusion systems with skew-gradient structure [J].
Chen, Chao-Nien ;
Hu, Xijun .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (02) :189-208
[7]  
Crandall M.G., 1971, J. Funct. Anal., V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[8]   A minimization problem associated with elliptic systems of FitzHugh-Nagumo type [J].
Dancer, EN ;
Yan, SS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (02) :237-253
[9]   A MAXIMUM PRINCIPLE FOR AN ELLIPTIC SYSTEM AND APPLICATIONS TO SEMILINEAR PROBLEMS [J].
DEFIGUEIREDO, DG ;
MITIDIERI, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) :836-849
[10]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&