Equidistribution of Eisenstein series on geodesic segments

被引:2
作者
Young, Matthew P. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Eisenstein series; Equidistribution; Quantum ergodicity; Riemann zeta function; Dirichlet L-functions; QUANTUM UNIQUE ERGODICITY; RESTRICTIONS; EIGENFUNCTIONS; FORMS; MASS;
D O I
10.1016/j.aim.2018.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show an asymptotic formula for the L-2 norm of the Eisenstein series E(z, 1/2 + iT) restricted to a segment of a geodesic connecting infinity and an arbitrary real. For generic geodesics of this form, the asymptotic formula shows that the Eisenstein series satisfies restricted QUE. On the other hand, for rational geodesics, the Eisenstein series does not satisfy restricted quantum ergodicity. As an application, we show that the zero set of the Eisenstein series intersects every such geodesic segment, provided T is large. We also make analogous conjectures for the Maass cusp forms. In particular, we predict that cusp forms do not satisfy restricted quantum ergodicity for rational geodesics. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1166 / 1218
页数:53
相关论文
共 35 条
  • [1] [Anonymous], 2006, Ramanujan Mathematical Society Lecture Notes Series
  • [2] Trilinear forms with Kloosterman fractions
    Bettin, Sandro
    Chandee, Vorrapan
    [J]. ADVANCES IN MATHEMATICS, 2018, 328 : 1234 - 1262
  • [3] DISTRIBUTION OF MASS OF HOLOMORPHIC CUSP FORMS
    Blomer, Valentin
    Khan, Rizwanur
    Young, Matthew
    [J]. DUKE MATHEMATICAL JOURNAL, 2013, 162 (14) : 2609 - 2644
  • [4] Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds
    Burq, N.
    Gerard, P.
    Tzvetkov, N.
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) : 445 - 486
  • [5] Davenport H., 2000, Graduate Texts in Mathematics, V74
  • [6] Bilinear forms with Kloosterman fractions
    Duke, W
    Friedlander, J
    Iwaniec, H
    [J]. INVENTIONES MATHEMATICAE, 1997, 128 (01) : 23 - 43
  • [7] Duke W., 1997, LONDON MATH SOC LECT, P109, DOI 10.1017/CBO9780511526091.009
  • [8] Quantum ergodicity for restrictions to hypersurfaces
    Dyatlov, Semyon
    Zworski, Maciej
    [J]. NONLINEARITY, 2013, 26 (01) : 35 - 52
  • [9] Nodal Domains of Maass Forms I
    Ghosh, Amit
    Reznikov, Andre
    Sarnak, Peter
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (05) : 1515 - 1568
  • [10] Gradshteyn S., 2014, Table of Integrals, Series, and Products, V8th