Stronger Forms of Transitivity and Sensitivity for Nonautonomous Discrete Dynamical Systems and Furstenberg Families

被引:13
作者
Li, Risong [1 ]
Zhao, Yu [1 ]
Wang, Hongqing [1 ]
Liang, Haihua [1 ]
机构
[1] Guangdong Ocean Univ, Sch Math & Comp Sci, Zhanjiang 524025, Peoples R China
关键词
Furstenberg family; Nonautonomous discrete dynamical systems; F-transiti; e; F-mixing; F-sensiti; F-collecti; ely sensiti; F-synchronous sensiti; (F-1; F-2)-sensiti; F-multi-sensitive; UNIFORM-CONVERGENCE; DEVANEYS CHAOS; LIMIT;
D O I
10.1007/s10883-019-09437-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let (Y, d) be a nontrivial metric space and (Y, g(1,infinity)) be a nonautonomous discrete dynamical system given by sequences (gl)l=1 infinity and F2 be given shift-invariant Furstenberg families. In this paper, we study stronger forms of transitivity and sensitivity for nonautonomous discrete dynamical systems by using Furstenberg family. In particular, we discuss the F-transitivity, F-mixing, F-sensitivity, F-collective sensitivity, F-synchronous sensitivity, (F-1, F-2)-sensitivity and F-multi-sensitivity for the system (Y, g(1,infinity)) and show that under the conditions that gj is semi-open and satisfies g(j) o g = g o gj for each j. {1, 2, ...} and that (, 1,) is -transitive if and only if so is (, ). Yg infinity Yg(, 1,) is -mixing if and only if so is (, ). Yg infinity Yg(, 1,) is -sensitive if and only if so is (, ). Yg infinity Yg(, 1,) is -sensitive if and only if so is (, ). Yg infinity Yg(, 1,) is -collectively sensitive if and only if so is (, ). Yg infinity Yg(, 1,) is -synchronous sensitive if and only if so is (, ). Yg infinity Yg(, 1,) is -multi-sensitive if and only if so is (, ). The above results extend the existing ones.
引用
收藏
页码:109 / 126
页数:18
相关论文
共 24 条
[1]   Uniform convergence and chaotic behavior [J].
Abu-Saris, Raghib ;
Ai-Hami, Kifah .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :933-937
[2]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[3]   Li-Yorke chaos in a class of nonautonomous discrete systems [J].
Canovas, Jose S. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (04) :479-486
[4]   Chaos in nonautonomous discrete dynamical systems [J].
Dvorakova, J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) :4649-4652
[5]   A note on the uniform limit of transitive dynamical systems [J].
Fedeli, Alessandro ;
Le Donne, Attilio .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (01) :59-66
[6]   Dynamics of homeomorphisms on minimal sets generated by triangular mappings [J].
Forti, GL ;
Paganoni, L ;
Smítal, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) :1-20
[7]   Devaney's chaos or 2-scattering implies Li-Yorke's chaos [J].
Huang, W ;
Ye, XD .
TOPOLOGY AND ITS APPLICATIONS, 2002, 117 (03) :259-272
[8]  
Kolyada S, 1999, FUND MATH, V160, P161
[9]  
Kolyada S., 1996, Random and Computational Dynamics, V4, P205
[10]   A note on uniform convergence and transitivity (vol 45, pg 759, 2012) [J].
Li, Risong ;
Wang, Hongqing .
CHAOS SOLITONS & FRACTALS, 2014, 59 :112-118