Conditional density estimation in measurement error problems

被引:2
作者
Wang, Xiao-Feng [1 ]
Ye, Deping [2 ]
机构
[1] Cleveland Clin, Dept Quantitat Hlth Sci, Lerner Res Inst, Biostat Sect, Cleveland, OH 44195 USA
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Measurement error; Gene microarray; Conditional density; Deconvolution; Ridge parameter; Kernel; Bandwidth selection; BANDWIDTH SELECTION; NONPARAMETRIC DECONVOLUTION; OPTIMAL RATES; CONVERGENCE; VALIDATION; DISTANCE; NOISE;
D O I
10.1016/j.jmva.2014.08.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is motivated by a wide range of background correction problems in gene array data analysis, where the raw gene expression intensities are measured with error. Estimating a conditional density function from the contaminated expression data is a key aspect of statistical inference and visualization in these studies. We propose re-weighted deconvolution kernel methods to estimate the conditional density function in an additive error model, when the error distribution is known as well as when it is unknown. Theoretical properties of the proposed estimators are investigated with respect to the mean absolute error from a "double asymptotic" view. Practical rules are developed for the selection of smoothing-parameters. Simulated examples and an application to an Illumina bead microarray study are presented to illustrate the viability of the methods. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 50
页数:13
相关论文
共 34 条
[1]   Bandwidth selection for kernel conditional density estimation [J].
Bashtannyk, DM ;
Hyndman, RJ .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (03) :279-298
[2]  
BICKEL PJ, 1988, SANKHYA SER A, V50, P381
[3]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[4]   Data-driven density estimation in the presence of additive noise with unknown distribution [J].
Comte, F. ;
Lacour, C. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 :601-627
[5]   On conditional density estimation [J].
De Gooijer, JG ;
Zerom, D .
STATISTICA NEERLANDICA, 2003, 57 (02) :159-176
[6]   Practical bandwidth selection in deconvolution kernel density estimation [J].
Delaigle, A ;
Gijbels, I .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) :249-267
[7]  
Delaigle A, 2008, STAT SINICA, V18, P1025
[8]   NONPARAMETRIC FUNCTION ESTIMATION UNDER FOURIER-OSCILLATING NOISE [J].
Delaigle, Aurore ;
Meister, Alexander .
STATISTICA SINICA, 2011, 21 (03) :1065-1092
[9]   Density estimation with heteroscedastic error [J].
Delaigle, Aurore ;
Meister, Alexander .
BERNOULLI, 2008, 14 (02) :562-579
[10]   A NOTE ON THE L1 CONSISTENCY OF VARIABLE KERNEL ESTIMATES [J].
DEVROYE, L .
ANNALS OF STATISTICS, 1985, 13 (03) :1041-1049