RECTANGULAR ORBITS OF THE CURVED 4-BODY PROBLEM

被引:0
|
作者
Diacu, Florin [1 ,2 ]
Thorn, Brendan [2 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 2Y2, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
N-BODY PROBLEM; RELATIVE EQUILIBRIA; INTRINSIC APPROACH; CURVATURE; SPACES; SINGULARITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the 4-body problem in spaces of constant curvature and study the existence of spherical and hyperbolic rectangular solutions, i.e. equiangular quadrilateral motions on spheres and hyperbolic spheres. We focus on relative equilibria (orbits that maintain constant mutual distances) and rotopulsators (configurations that rotate and change size, but preserve equiangularity). We prove that when such orbits exist, they are necessarily spherical or hyperbolic squares, i.e. equiangular equilateral quadrilaterals.
引用
收藏
页码:1583 / 1593
页数:11
相关论文
共 50 条