RECTANGULAR ORBITS OF THE CURVED 4-BODY PROBLEM

被引:0
|
作者
Diacu, Florin [1 ,2 ]
Thorn, Brendan [2 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 2Y2, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
N-BODY PROBLEM; RELATIVE EQUILIBRIA; INTRINSIC APPROACH; CURVATURE; SPACES; SINGULARITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the 4-body problem in spaces of constant curvature and study the existence of spherical and hyperbolic rectangular solutions, i.e. equiangular quadrilateral motions on spheres and hyperbolic spheres. We focus on relative equilibria (orbits that maintain constant mutual distances) and rotopulsators (configurations that rotate and change size, but preserve equiangularity). We prove that when such orbits exist, they are necessarily spherical or hyperbolic squares, i.e. equiangular equilateral quadrilaterals.
引用
收藏
页码:1583 / 1593
页数:11
相关论文
共 50 条
  • [21] Relative equilibria for the positive curved n-body problem
    Perez-Chavela, Ernesto
    Sanchez-Cerritos, Juan Manuel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
  • [22] New orbits for the n-body problem
    Vanderbei, RJ
    ASTRODYNAMICS, SPACE MISSIONS, AND CHAOS, 2004, 1017 : 422 - 433
  • [23] All the Lagrangian relative equilibria of the curved 3-body problem have equal masses
    Diacu, Florin
    Popa, Sergiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [24] Regularization of the restricted (n+1)-body problem on curved spaces
    Perez-Chavela, Ernesto
    Sanchez-Cerritos, Juan Manuel
    ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (10)
  • [25] Hyperbolic regularization of the restricted three-body problem on curved spaces
    Sanchez-Cerritos, Juan Manuel
    Perez-Chavela, Ernesto
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [26] Periodic orbits in the general three-body problem
    Martynova, A. I.
    Orlov, V. V.
    SOLAR SYSTEM RESEARCH, 2013, 47 (05) : 363 - 375
  • [27] Stability of Euler-Type Relative Equilibria in the Curved Three Body Problem
    Perez-Chavela, Ernesto
    Sanchez Cerritos, Juan Manuel
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 59 - 63
  • [28] Stability of Euler-Type Relative Equilibria in the Curved Three Body Problem
    Perez-Chavela, Ernesto
    Sanchez Cerritos, Juan Manuel
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 65 - 69
  • [30] Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem
    Fujiwara, Toshiaki
    Perez-Chavela, Ernesto
    REGULAR & CHAOTIC DYNAMICS, 2024, 29 (06) : 803 - 824