RECTANGULAR ORBITS OF THE CURVED 4-BODY PROBLEM

被引:0
|
作者
Diacu, Florin [1 ,2 ]
Thorn, Brendan [2 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 2Y2, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
N-BODY PROBLEM; RELATIVE EQUILIBRIA; INTRINSIC APPROACH; CURVATURE; SPACES; SINGULARITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the 4-body problem in spaces of constant curvature and study the existence of spherical and hyperbolic rectangular solutions, i.e. equiangular quadrilateral motions on spheres and hyperbolic spheres. We focus on relative equilibria (orbits that maintain constant mutual distances) and rotopulsators (configurations that rotate and change size, but preserve equiangularity). We prove that when such orbits exist, they are necessarily spherical or hyperbolic squares, i.e. equiangular equilateral quadrilaterals.
引用
收藏
页码:1583 / 1593
页数:11
相关论文
共 50 条
  • [1] Relative Equilibria in Curved Restricted 4-body Problems
    Alhowaity, Sawsan
    Diacu, Florin
    Perez-Chavela, Ernesto
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (04): : 673 - 687
  • [2] On the stability of tetrahedral relative equilibria in the positively curved 4-body problem
    Diacu, Florin
    Martinez, Regina
    Perez-Chavela, Ernesto
    Simo, Carles
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 256 : 21 - 35
  • [3] Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem
    Diacu, Florin
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (11)
  • [4] New families of periodic orbits in the 4-body problem emanating from a kite configuration
    Bengochea, Abimael
    Hernandez-Garduno, Antonio
    Perez-Chavela, Ernesto
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 398
  • [5] The Rhomboidal 4-Body Problem Revisited
    Alvarez-Ramirez, Martha
    Medina, Mario
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2015, 14 (02) : 189 - 207
  • [6] On the Uniqueness of Convex Central Configurations in the Planar 4-Body Problem
    Sun, Shanzhong
    Xie, Zhifu
    You, Peng
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (04) : 512 - 532
  • [7] Inverse problem of central configurations and singular curve in the collinear 4-body problem
    Xie, Zhifu
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2010, 107 (03) : 353 - 376
  • [8] Keplerian Action, Convexity Optimization, and the 4-Body Problem
    Chen, Kuo-Chang
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (01) : 24 - 58
  • [10] The Classical N-body Problem in the Context of Curved Space
    Diacu, Florin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (04): : 790 - 806