A subset-search and ranking based feature-selection for histology image classification using global and local quantification

被引:0
作者
Coatelen, J. [1 ,2 ,3 ]
Albouy-Kissi, A. [1 ,3 ]
Albouy-Kissi, B. [1 ,4 ]
Coton, J. P. [2 ]
Maunier-Sifre, L. [2 ]
Joubert-Zakeyh, J. [5 ]
Dechelotte, P. [5 ]
Abergel, A. [1 ,3 ,5 ]
机构
[1] Univ Auvergne, 49 Blvd Francois Mitterrand,CS 60032, F-63001 Clermont Ferrand 1, France
[2] HISTALIM, 126 Rue Emile Baudot, F-34000 Montpellier, France
[3] Image Sci Intervent Tech, Fac Med, Batiment 3C, F-63001 Clermont Ferrand, France
[4] Univ Auvergne, CNRS UMR 6602, Inst Pascal, F-63000 Clermont Ferrand, France
[5] CHU Estaing, Clermont Ferrand, France
来源
5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, THEORY, TOOLS AND APPLICATIONS 2015 | 2015年
关键词
framework; fibrosis; feature selection; support vector machines; feature ranking; SEGMENTATION; VARIABILITY; FIBROSIS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Biopsy remains the gold standard for the diagnosis of chronic liver diseases. However, the variability in the diagnostic between readers leads to define a method to objectively describe histologic tissue. A complete framework has been implemented to analyze images of any tissue. Based on subset selection and feature ranking approaches, a feature selection computes the most relevant subset of descriptors in terms of classification from a wide initial list of descriptors. In comparison with equivalent methods, this implementation can find lists of descriptors which are significantly shorter for an equivalent accuracy. Furthermore, it enables the classification of slides using combinations of global and local measurements. The results have pointed that it could reach an accuracy of 90.5% (ROC-AUC=81.1%) in a human liver fibrosis grading approach by selecting 3 of the 457 global and local descriptors. The feature ranking approach gave less accurate subsets than the subset selection.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 30 条
[1]   Sampling variability of liver fibrosis in chronic hepatitis C [J].
Bedossa, P ;
Dargère, D ;
Paradis, V .
HEPATOLOGY, 2003, 38 (06) :1449-1457
[2]  
Blachnik M, 2009, ADV INTEL SOFT COMPU, V57, P257
[3]  
Caicedo JC, 2009, LECT NOTES ARTIF INT, V5651, P126, DOI 10.1007/978-3-642-02976-9_17
[4]   Computer-Assisted Image Analysis of Liver Collagen: Relationship to Ishak Scoring and Hepatic Venous Pressure Gradient [J].
Calvaruso, Vincenza ;
Burroughs, Andrew Kenneth ;
Standish, Richard ;
Manousou, Pinelopi ;
Grillo, Federica ;
Leandro, Gioacchino ;
Maimone, Sergio ;
Pleguezuelo, Maria ;
Xirouchakis, Ilias ;
Guerrini, Gian Piero ;
Patch, David ;
Yu, Dominic ;
O'Beirne, James ;
Dhillon, Amar Paul .
HEPATOLOGY, 2009, 49 (04) :1236-1244
[5]   Color image segmentation based on homogram thresholding and region merging [J].
Cheng, HD ;
Jiang, XH ;
Wang, JL .
PATTERN RECOGNITION, 2002, 35 (02) :373-393
[6]  
Coatelen J, 2014, IEEE ENG MED BIO, P1937, DOI 10.1109/EMBC.2014.6943991
[7]  
Coatelen Jeremy, 2014, SPIE MED IMAGING
[8]   Visual pattern mining in histology image collections using bag of features [J].
Cruz-Roa, Angel ;
Caicedo, Juan C. ;
Gonzalez, Fabio A. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2011, 52 (02) :91-106
[9]   Ensemble based system for whole-slide prostate cancer probability mapping using color texture features [J].
DiFranco, Matthew D. ;
O'Hurley, Gillian ;
Kay, Elaine W. ;
Watson, R. William G. ;
Cunningham, Padraig .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2011, 35 (7-8) :629-645
[10]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874