Diffusion tensor MR image restoration

被引:0
作者
Wang, Z [1 ]
Vemuri, BC
Chen, Y
机构
[1] Univ Florida, Dept CISE, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
来源
ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 2003年 / 2683卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion tensor magnetic resonance imaging (DT-MRI) can provide the fundamental information required to visualize structural connectivity. However, this high-dimensional data can be rather noisy and requires restoration. In this paper, we present a novel unified formulation involving a variational principle for simultaneous smoothing and estimation of the diffusion tensor field from DT-MRI. This tensor field is estimated directly from the measurements using a combination of L-P smoothness and positive definiteness constraints respectively. The data term we employ is the Stejskal-Tanner equation instead of its linearized version as usually employed in the published literature. In addition, we impose the positive definite constraint via the Cholesky decomposition of the tensors in the field. Our unified variational principle is discretized and solved numerically using the limited memory quasi-Newton method. Algorithm performance is depicted via both synthetic and real data experiments.
引用
收藏
页码:421 / 435
页数:15
相关论文
共 29 条
[1]   ALTERNATIVE THERAPY IN SEVERE ASTHMA [J].
ALVAREZ, J ;
SZEFLER, SJ .
JOURNAL OF ASTHMA, 1992, 29 (01) :3-11
[2]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[3]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[4]  
BLOMGREN P, 1997, 9742 UCLA
[5]  
CASELLES V, 1998, IEEE TIP SPECIAL ISS, V7
[6]  
CHAN TF, 1996, P 12 INT C AN OPT SY, P241
[7]  
CHEFDHOTEL C, 2002, ECCV, V1, P251
[8]   Tracking neuronal fiber pathways in the living human brain [J].
Conturo, TE ;
Lori, NF ;
Cull, TS ;
Akbudak, E ;
Snyder, AZ ;
Shimony, JS ;
McKinstry, RC ;
Burton, H ;
Raichle, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10422-10427
[9]  
Coulon O., 2001, Information Processing in Medical Imaging. 17th International Conference, IPMI 2001. Proceedings (Lecture Notes in Computer Science Vol.2082), P92
[10]  
Evans L.C., 1997, GRADUATE STUDIES MAT