On Bayes methods for on-line Boolean prediction

被引:6
作者
Cesa-Bianchi, N
Helmbold, DP
Panizza, S
机构
[1] Univ Milan, DSI, I-20135 Milano, Italy
[2] Univ Calif Santa Cruz, Dept Comp Sci, Santa Cruz, CA 95064 USA
关键词
Boolean prediction; on-line algorithms; Bayes theory;
D O I
10.1007/PL00013825
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We examine a general Bayesian framework for constructing on-line prediction algorithms in the experts setting. These algorithms predict the bits of an unknown Boolean sequence using the advice of a finite set of experts. In this framework we use probabilistic assumptions on the unknown sequence to motivate prediction strategies. However, the relative bounds that we prove on the number of prediction mistakes made by these strategies hold for any sequence. The Bayesian framework provides a unified derivation and analysis of previously known prediction strategies, such as the Weighted Majority and Binomial Weighting algorithms. Furthermore, it provides a principled way of automatically adapting the parameters of Weighted Majority to the sequence, in contrast to previous ad hoc doubling techniques. Finally, we discuss the generalization of our methods to algorithms making randomized predictions.
引用
收藏
页码:112 / 137
页数:26
相关论文
共 13 条
  • [1] [Anonymous], 1995, Theory of Statistics
  • [2] Berger JO., 1985, Statistical Decision Theory and Bayesian Analysis, V2, DOI DOI 10.1007/978-1-4757-4286-2
  • [3] On-line prediction and conversion strategies
    CesaBianchi, N
    Freund, Y
    Helmbold, DP
    Warmuth, MK
    [J]. MACHINE LEARNING, 1996, 25 (01) : 71 - 110
  • [4] How to use expert advice
    CesaBianchi, N
    Freund, Y
    Haussler, D
    Helmbold, DP
    Schapire, RE
    Warmuth, MK
    [J]. JOURNAL OF THE ACM, 1997, 44 (03) : 427 - 485
  • [5] UNIVERSAL PREDICTION OF INDIVIDUAL SEQUENCES
    FEDER, M
    MERHAV, N
    GUTMAN, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (04) : 1258 - 1270
  • [6] HAUSSLER D, 1995, LECT NOTES COMPUTER, V904, P69
  • [7] HAUSSLER D, 1993, P 3 NEC S SIAM PHIL, P74
  • [8] KIVINEN J, 1994, P 1 EUR WORKSH I MAT
  • [9] THE WEIGHTED MAJORITY ALGORITHM
    LITTLESTONE, N
    WARMUTH, MK
    [J]. INFORMATION AND COMPUTATION, 1994, 108 (02) : 212 - 261
  • [10] LITTLESTONE N, 1997, ADV NEURAL INFORMATI, V9