Extremes of the 2d scale-inhomogeneous discrete Gaussian free field: Extremal process in the weakly correlated regime

被引:3
作者
Fels, Maximilian [1 ]
Hartung, Lisa [2 ]
机构
[1] Rheinische Friedrich Wilhelms Univ, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55099 Mainz, Germany
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2021年 / 18卷 / 02期
关键词
Gaussian free field; inhomogeneous environment; extreme values; extremal processes; branching Brownian motion; branching random walk; BRANCHING BROWNIAN-MOTION; LEVEL SETS; MAXIMUM; CONVERGENCE; STATISTICS; LIMIT; LAW;
D O I
10.30757/ALEA.v18-62
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove convergence of the full extremal process of the scale-inhomogeneous discrete Gaussian free field in dimension two in the weak correlation regime. The scale-inhomogeneous discrete Gaussian free field is obtained from the 2d discrete Gaussian free field by modifying the variance through a function I : [0, 1] -> [0, 1]. The full extremal process converges to a cluster Cox process. The random intensity of the Cox process depends on I' (0) through a random measure Y and on I' (1) through a constant beta. We show that, in law, the random measure, Y, is equal to the Liouville Quantum Gravity measure at sub-critical temperature f alpha = 2 sigma(0). The cluster process, which only depends on I0 (1), can be described as atoms of a standard 2d discrete Gaussian free field conditioned to be unusually high.
引用
收藏
页码:1689 / 1718
页数:30
相关论文
共 42 条
[1]   Branching Brownian motion seen from its tip [J].
Aidekon, E. ;
Berestycki, J. ;
Brunet, E. ;
Shi, Z. .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (1-2) :405-451
[2]   Genealogy of Extremal Particles of Branching Brownian Motion [J].
Arguin, L. -P. ;
Bovier, A. ;
Kistler, N. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (12) :1647-1676
[3]   Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line [J].
Arguin, Louis-Pierre ;
Belius, David ;
Bourgade, Paul ;
Radziwill, Maksym ;
Soundararajan, Kannan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (03) :500-535
[4]   Maximum of the Characteristic Polynomial of Random Unitary Matrices [J].
Arguin, Louis-Pierre ;
Belius, David ;
Bourgade, Paul .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) :703-751
[5]  
Arguin LP, 2016, ALEA-LAT AM J PROBAB, V13, P779
[6]   Poisson-Dirichlet statistics for the extremes of the two-dimensional discrete Gaussian free field [J].
Arguin, Louis-Pierre ;
Zindy, Olivier .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-19
[7]   The extremal process of branching Brownian motion [J].
Arguin, Louis-Pierre ;
Bovier, Anton ;
Kistler, Nicola .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) :535-574
[8]   POISSONIAN STATISTICS IN THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION [J].
Arguin, Louis-Pierre ;
Bovier, Anton ;
Kistler, Nicola .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (04) :1693-1711
[9]   On intermediate level sets of two-dimensional discrete Gaussian free field [J].
Biskup, Marek ;
Louidor, Oren .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04) :1948-1987
[10]   Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian Free Field [J].
Biskup, Marek ;
Louidor, Oren .
ADVANCES IN MATHEMATICS, 2018, 330 :589-687