Strongly compatible generators of groups on Frechet spaces

被引:1
作者
Aragao-Costa, E. R. [1 ]
da Silva, A. P. [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Frechet space; Groups of linear operators; Initial value problem; Pseudodifferential operator; SEMIGROUPS;
D O I
10.1016/j.jmaa.2019.123612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the linear Cauchy problem {u(t) = a(D)u, t is an element of R u(0) = u(0), (1) where a(D) : X -> X is a continuous linear operator on a Frechet space X. By imposing a condition (which is neither stronger nor weaker than the equicontinuity of the powers of a(D)), we present the necessary and sufficient conditions for the generation of a uniformly continuous group on X, which provides the unique solution of (1). In addition, for every pseudodifferential operator a(D) with constant coefficients defined on F L-loc(2), which is a Frechet space of distributions, we also provide the necessary and sufficient conditions such that the restriction {e(t) (a(D))}(t >= 0) is a well defined semigroup on L-2 and E'. We conclude that the heat equation solution on F L-loc(2) for all t is an element of R extends the standard solution on Hilbert spaces for t >= 0. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 15 条
[1]  
[Anonymous], 1999, REAL ANAL MODERN TEC
[2]  
Aragdo Costa E.R., 2016, ABSTR APPL ANAL, V2016, P1
[3]   SEMIGROUPS OF OPERATORS ON LOCALLY CONVEX-SPACES [J].
BABALOLA, VA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 199 (NOV) :163-179
[4]   CO-SEMIGROUPS ON A LOCALLY CONVEX SPACE [J].
CHOE, YH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 106 (02) :293-320
[5]   On the existence of transitive and topologically mixing semigroup [J].
Conejero, Jose A. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (03) :463-471
[6]  
Dembart B., 1974, Journal of Functional Analysis, V16, P123, DOI 10.1016/0022-1236(74)90061-5
[7]   Strongly continuous semigroups on some Frechet spaces [J].
Frerick, Leonhard ;
Jorda, Enrique ;
Kalmes, Thomas ;
Wengenroth, Jochen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :121-124
[8]   Non-power bounded generators of strongly continuous semigroups [J].
Golinska, Anna ;
Wegner, Sven-Ake .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) :429-438
[9]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [DOI 10.1007/BFB0089647, 10.1007/BFb0089647]
[10]  
Hormander L., 1980, CLASSICS MATH