A fast simplified fuzzy ARTMAP network

被引:50
作者
Vakil-Baghmisheh, MT [1 ]
Pavesic, N [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Lab Artificial Percept Syst & Cybernet, Ljubljana 61000, Slovenia
关键词
backpropagation with selective training; backpropagation with plummeting learning rate factor; comparative study; Farsi optical character recognition; multilayer perceptron; neural networks; simplified fuzzy ARTMAP;
D O I
10.1023/A:1026004816362
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an algorithmic variant of the simplified fuzzy ARTMAP (SFAM) network, whose structure resembles those of feed-forward networks. Its difference with Kasuba's model is discussed, and their performances are compared on two benchmarks. We show that our algorithm is much faster than Kasuba's algorithm, and by increasing the number of training samples, the difference in speed grows enormously. The performances of the SFAM and the MLP (multilayer perceptron) are compared on three problems: the two benchmarks, and the Farsi optical character recognition (OCR) problem. For training the MLP two different variants of the backpropagation algorithm are used: the BPLRF algorithm (backpropagation with plummeting learning rate factor) for the benchmarks, and the BST algorithm (backpropagation with selective training) for the Farsi OCR problem. The results obtained on all of the three case studies with the MLP and the SFAM, embedded in their customized systems, show that the SFAM's convergence in fast-training mode, is faster than that of MLP, and online operation of the MLP is faster than that of the SFAM. On the benchmark problems the MLP has much better recognition rate than the SFAM. On the Farsi OCR problem, the recognition error of the SFAM is higher than that of the MLP on ill-engineered datasets, but equal on well-engineered ones. The flexible configuration of the SFAM, i.e. its capability to increase the size of the network in order to learn new patterns, as well as its simple parameter adjustment, remain unchallenged by the MLP.
引用
收藏
页码:273 / 316
页数:44
相关论文
共 52 条
[1]   A novel approach to fault diagnosis in multicircuit transmission lines using fuzzy ARTmap neural networks [J].
Aggarwal, RK ;
Xuan, QY ;
Johns, AT ;
Li, FR ;
Bennett, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :1214-1221
[2]  
[Anonymous], P 10 EL COMP SCI C
[3]  
Blume M., 1996, WCNN'96. World Congress on Neural Networks. International Neural Network Society 1996 Annual Meeting, P250
[4]   ART-3 - HIERARCHICAL SEARCH USING CHEMICAL TRANSMITTERS IN SELF-ORGANIZING PATTERN-RECOGNITION ARCHITECTURES [J].
CARPENTER, GA ;
GROSSBERG, S .
NEURAL NETWORKS, 1990, 3 (02) :129-152
[5]   ART 2-A - AN ADAPTIVE RESONANCE ALGORITHM FOR RAPID CATEGORY LEARNING AND RECOGNITION [J].
CARPENTER, GA ;
GROSSBERG, S ;
ROSEN, DB .
NEURAL NETWORKS, 1991, 4 (04) :493-504
[6]   FUZZY ART - FAST STABLE LEARNING AND CATEGORIZATION OF ANALOG PATTERNS BY AN ADAPTIVE RESONANCE SYSTEM [J].
CARPENTER, GA ;
GROSSBERG, S ;
ROSEN, DB .
NEURAL NETWORKS, 1991, 4 (06) :759-771
[7]   ART neural networks for remote sensing: Vegetation classification from Landsat TM and terrain data [J].
Carpenter, GA ;
Gjaja, MN ;
Gopal, S ;
Woodcock, CE .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (02) :308-325
[8]   FUZZY ARTMAP - A NEURAL NETWORK ARCHITECTURE FOR INCREMENTAL SUPERVISED LEARNING OF ANALOG MULTIDIMENSIONAL MAPS [J].
CARPENTER, GA ;
GROSSBERG, S ;
MARKUZON, N ;
REYNOLDS, JH ;
ROSEN, DB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05) :698-713
[9]   ARTMAP-IC and medical diagnosis: Instance counting and inconsistent cases [J].
Carpenter, GA ;
Markuzon, N .
NEURAL NETWORKS, 1998, 11 (02) :323-336
[10]   ARTMAP - SUPERVISED REAL-TIME LEARNING AND CLASSIFICATION OF NONSTATIONARY DATA BY A SELF-ORGANIZING NEURAL NETWORK [J].
CARPENTER, GA ;
GROSSBERG, S ;
REYNOLDS, JH .
NEURAL NETWORKS, 1991, 4 (05) :565-588