Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway

被引:30
|
作者
Xiang, Nan-lin [1 ]
Liu, Jun [2 ]
Liao, Yun-jian [1 ]
Huang, You-wei [1 ]
Wu, Zheng [3 ]
Bai, Zhi-quan [2 ]
Lin, Xi [1 ,4 ]
Zhang, Jian-hua [5 ,6 ]
机构
[1] Jinan Univ, Dept Pharmacol, Coll Med, Guangzhou 510632, Guangdong, Peoples R China
[2] Jinan Univ, Dept Physiol, Coll Med, Guangzhou 510632, Guangdong, Peoples R China
[3] Jinan Univ, Dept Dev & Regenerat Biol, Guangzhou 510632, Guangdong, Peoples R China
[4] Jinan Univ, Environm Coll, Dept Key Lab Environm Exposure & Hlth, Guangzhou 510632, Guangdong, Peoples R China
[5] Jinan Univ, Dept Guangzhou Overseas Chinese Hosp, Guangzhou 510632, Guangdong, Peoples R China
[6] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Cardiol, Guangzhou 510120, Guangdong, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
国家高技术研究发展计划(863计划);
关键词
FACTOR-KAPPA-B; CHLORIDE CHANNELS; ACTIVATION;
D O I
10.1038/srep27583
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study investigated the function of a chloride channel blocker, DIDS. Both in vitro and in vivo studies found that DIDS significantly inhibits lipopolysaccharide (LPS)-induced release of proin flammatory cytokines. Here, we show that DIDS inhibits LPS-induced inflammation, as shown by downregulation of inflammatory cytokines via inhibition of the TLR4/NF-kappa B pathway. Furthermore, we show that ClC-3siRNA transfection reduces LPS-induced pro-inflammation in Raw264.7 cells, indicating that ClC-3 is involved in the inhibitory effect of DIDS during LPS-induced cytokines release. In vivo, DIDS reduced LPS-induced mortality, decreased LPS-induced organic damage, and down-regulated LPS-induced expression of inflammatory cytokines. In sum, we demonstrate that ClC-3 is a pro-inflammatory factor and that inhibition of ClC-3 inhibits inflammatory induction both in vitro and in vivo, suggesting that ClC-3 is a potential anti-inflammatory target.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway
    Nan-lin Xiang
    Jun Liu
    Yun-jian Liao
    You-wei Huang
    Zheng Wu
    Zhi-quan Bai
    Xi Lin
    Jian-hua Zhang
    Scientific Reports, 6
  • [2] Blumeatin inhibits LPS-induced inflammation of TLR4/NF-κB signaling pathway via targeting TLR4/MD-2
    Peng, Jun-Chao
    Qi, Wei-Jin
    Wang, Hong-Ying
    Zhou, Wei
    Yu, Xing-Jian
    Wang, Lu
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2025,
  • [3] Lianqinjiedu decoction attenuates LPS-induced inflammation and acute lung injury in rats via TLR4/NF-κB pathway
    Deng, Guiming
    He, Hai
    Chen, Zheng
    OuYang, Linqi
    Xiao, Xiaoqin
    Ge, Jinwen
    Xiang, Biao
    Jiang, Sichen
    Cheng, Shaowu
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 96 : 148 - 152
  • [4] Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4/NF-κB pathway activation
    Du, Lin
    Li, Jianke
    Zhang, Xitong
    Wang, Lifang
    Zhang, Weimin
    Yang, Mi
    Hou, Chen
    FOOD & NUTRITION RESEARCH, 2019, 63
  • [5] ISGylation Inhibits an LPS-Induced Inflammatory Response via the TLR4/NF-κB Signaling Pathway in Goat Endometrial Epithelial Cells
    Xiao, Jinbang
    Li, Shanshan
    Zhang, Ruixue
    Wang, Zongjie
    Zhang, Xinyan
    Wang, Aihua
    Jin, Yaping
    Lin, Pengfei
    ANIMALS, 2021, 11 (09):
  • [6] Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Zhang, Hua
    Wu, Zhi-min
    Yang, Ya-ping
    Shaukat, Aftab
    Yang, Jing
    Guo, Ying-fang
    Zhang, Tao
    Zhu, Xin-ying
    Qiu, Jin-xia
    Deng, Gan-zhen
    Shi, Dong-mei
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2019, 20 (10): : 816 - 827
  • [7] 6-Bromoindirubin-3′-Oxime Suppresses LPS-Induced Inflammation via Inhibition of the TLR4/NF-κB and TLR4/MAPK Signaling Pathways
    Chang Liu
    Xin Tang
    Wenjing Zhang
    Guohong Li
    Yingyu Chen
    Aizhen Guo
    Changmin Hu
    Inflammation, 2019, 42 : 2192 - 2204
  • [8] 6-Bromoindirubin-3′-Oxime Suppresses LPS-Induced Inflammation via Inhibition of the TLR4/NF-κB and TLR4/MAPK Signaling Pathways
    Liu, Chang
    Tang, Xin
    Zhang, Wenjing
    Li, Guohong
    Chen, Yingyu
    Guo, Aizhen
    Hu, Changmin
    INFLAMMATION, 2019, 42 (06) : 2192 - 2204
  • [9] Schizandrin B protects LPS-induced sepsis via TLR4/NF-κB/MyD88 signaling pathway
    Xu, Jianjun
    Lu, Caijiao
    Liu, Zhengjun
    Zhang, Peng
    Guo, Hailei
    Wang, Tingting
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2018, 10 (04): : 1155 - 1163
  • [10] Strontium Attenuates LPS-Induced Inflammation via TLR4/MyD88/NF-κB Pathway in Bovine Ruminal Epithelial Cells
    Tan, Panpan
    Yang, Jiaqi
    Yi, Fanxuan
    Mei, Linshan
    Wang, Yazhou
    Zhao, Chenxu
    Zhao, Baoyu
    Wang, Jianguo
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2024, 202 (09) : 3988 - 3998