Bell's inequality and entanglement in qubits

被引:11
作者
Chang, Po-Yao [1 ]
Chu, Su-Kuan [2 ,3 ]
Ma, Chen-Te [4 ,5 ]
机构
[1] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA
[2] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Univ Maryland, NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[4] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2017年 / 09期
基金
美国国家科学基金会;
关键词
Topological Field Theories; Topological States of Matter; QUANTUM; STATES;
D O I
10.1007/JHEP09(2017)100
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose an alternative evaluation of quantum entanglement by measuring the maximum violation of the Bell's inequality without information of the reduced density matrix of a system. This proposal is demonstrated by bridging the maximum violation of the Bell's inequality and a concurrence of a pure state in an n-qubit system, in which one subsystem only contains one qubit and the state is a linear combination of two product states. We apply this relation to the ground states of four qubits in the Wen-Plaquette model and show that they are maximally entangled. A topological entanglement entropy of the Wen-Plaquette model could be obtained by relating the upper bound of the maximum violation of the Bell's inequality to the generalized concurrence of a pure state with respect to different bipartitions.
引用
收藏
页数:11
相关论文
共 19 条
  • [1] Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
  • [2] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [3] QUANTUM GENERALIZATIONS OF BELLS-INEQUALITY
    CIRELSON, BS
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1980, 4 (02) : 93 - 106
  • [4] PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES
    CLAUSER, JF
    HORNE, MA
    SHIMONY, A
    HOLT, RA
    [J]. PHYSICAL REVIEW LETTERS, 1969, 23 (15) : 880 - &
  • [5] Uniform Additivity in Classical and Quantum Information
    Cross, Andrew
    Li, Ke
    Smith, Graeme
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (04)
  • [6] Bell inequality, Bell states and maximally entangled states for n qubits
    Gisin, N
    Bechmann-Pasquinucci, H
    [J]. PHYSICS LETTERS A, 1998, 246 (1-2) : 1 - 6
  • [7] Entanglement entropy as a portal to the physics of quantum spin liquids
    Grover, Tarun
    Zhang, Yi
    Vishwanath, Ashvin
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [8] Bipartite entanglement and entropic boundary law in lattice spin systems
    Hamma, A
    Ionicioiu, R
    Zanardi, P
    [J]. PHYSICAL REVIEW A, 2005, 71 (02):
  • [9] VIOLATING BELL INEQUALITY BY MIXED SPIN-1/2 STATES - NECESSARY AND SUFFICIENT CONDITION
    HORODECKI, R
    HORODECKI, P
    HORODECKI, M
    [J]. PHYSICS LETTERS A, 1995, 200 (05) : 340 - 344
  • [10] Revisiting entanglement entropy of lattice gauge theories
    Hung, Ling-Yan
    Wan, Yidun
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04):