Ellipsoids and matrix-valued valuations

被引:175
作者
Ludwig, M [1 ]
机构
[1] Vienna Tech Univ, Abt Anal, A-1040 Vienna, Austria
关键词
D O I
10.1215/S0012-7094-03-11915-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a classification of Borel measurable, GL(n) covariant, symmetric-matrix-valued valuations on the space of n-dimensional convex polytopes. The only ones turn out to be the moment matrix corresponding to the classical Legendre ellipsoid and the matrix corresponding to the ellipsoid recently discovered by E. Lutwak, D. Yang, and G. Zhang.
引用
收藏
页码:159 / 188
页数:30
相关论文
共 32 条
[1]   On P. McMullen's conjecture on translation invariant valuations [J].
Alesker, S .
ADVANCES IN MATHEMATICS, 2000, 155 (02) :239-263
[2]   Description of continuous isometry covariant valuations on convex sets [J].
Alesker, S .
GEOMETRIAE DEDICATA, 1999, 74 (03) :241-248
[3]   Continuous rotation invariant valuations on convex sets [J].
Alesker, S .
ANNALS OF MATHEMATICS, 1999, 149 (03) :977-1005
[4]   Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture [J].
Alesker, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (02) :244-272
[5]  
[Anonymous], LECT NOTES MATH
[6]  
[Anonymous], 1957, VORLESUNGEN INHALT O
[7]  
[Anonymous], ENCY MATH APPL
[8]  
Giannopoulos AA, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P707, DOI 10.1016/S1874-5849(01)80019-X
[9]   Information-theoretic inequalities for contoured probability distributions [J].
Guleryuz, OG ;
Lutwak, E ;
Yang, D ;
Zhang, GY .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) :2377-2383
[10]  
KLAIN D. A, 1997, LEZIONI LINCEE